Muutke küpsiste eelistusi

E-raamat: Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithmetic Curves

  • Formaat: PDF+DRM
  • Sari: Progress in Mathematics 334
  • Ilmumisaeg: 21-Aug-2020
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030443290
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 135,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Progress in Mathematics 334
  • Ilmumisaeg: 21-Aug-2020
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030443290
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents the most up-to-date and sophisticated account of the theory of Euclidean lattices and sequences of Euclidean lattices, in the framework of Arakelov geometry, where Euclidean lattices are considered as vector bundles over arithmetic curves. It contains a complete description of the theta invariants which give rise to a closer parallel with the geometric case. The author then unfolds his theory of infinite Hermitian vector bundles over arithmetic curves and their theta invariants, which provides a conceptual framework to deal with the sequences of lattices occurring in many diophantine constructions.

The book contains many interesting original insights and ties to other theories. It is written with extreme care, with a clear and pleasant style, and never sacrifices accessibility to sophistication. 


Arvustused

The Preface and the Introduction give an extremely well-done overview of the contents of the book, meant for a wide scope of readers. What results is a carefully written very readable text. (Rolf Berndt, Mathematical Reviews, April, 2022) The monograph presents its interesting subject in a highly insightful, lucid, and accessible fashion; it will therefore be relevant to anyone with an interest in Arakelov geometry. While its results are technical, they are motivated, described and proved as clearly as can be. (Jeroen Sijsling, zbMATH 1471.11002, 2021)

Preface xi
Introduction 1(10)
1 Hermitian Vector Bundles over Arithmetic Curves
11(14)
1.1 Definitions and Basic Operations
11(2)
1.2 Direct Images. The Canonical Hermitian Line Bundle U0Kn over SpecCV
13(1)
1.3 Arakelov Degree and Slopes
14(2)
1.4 Morphisms and Extensions of Hermitian Vector Bundles
16(9)
2 θ-Invariants of Hermitian Vector Bundles over Arithmetic Curves
25(24)
2.1 The Poisson Formula
26(2)
2.2 The θ-Invariants h0θ and h1θ and the Poisson-Riemann-Roch Formula
28(1)
2.3 Positivity and Monotonicity
29(4)
2.4 The Functions τ and η
33(2)
2.5 The θ-invariants of direct sums of Hermitian line bundles over Spec Z
35(1)
2.6 The Theta Function θE and the First Minimum λ1(E)
36(5)
2.7 Application to Hermitian Line Bundles
41(3)
2.8 Subadditivity of h0θ and h1θ
44(5)
3 Geometry of Numbers and θ-Invariants
49(28)
3.1 Comparing h0θ and h0&Ar
50(3)
3.2 Banaszczyk's Estimates and θ-Invariants
53(6)
3.3 Subadditive Invariants of Euclidean Lattices
59(3)
3.4 The Asymptotic Invariant hoar(E,t)
62(8)
3.5 Some Consequences of Siegel's Mean Value Theorem
70(7)
4 Countably Generated Projective Modules over Dedekind Rings
77(30)
4.1 Countably Generated Projective A-Modules
77(3)
4.2 Linearly Compact Tate Spaces with Countable Basis
80(6)
4.3 The Duality Between CPA and CTCA
86(4)
4.4 Strict Morphisms, Exactness and Duality
90(10)
4.5 Localization and Descent Properties
100(1)
4.6 Examples
101(6)
5 Ind- and Pro-Hermitian Vector Bundles over Arithmetic Curves
107(30)
5.1 Definitions
108(5)
5.2 Hilbertizable Ind- and Pro-vector Bundles
113(1)
5.3 Constructions as Inductive and Projective Limits
114(3)
5.4 Morphisms Between Ind- and Pro-Hermitian Vector Bundles over Ok
117(4)
5.5 The Duality Between Ind- and Pro-Hermitian Vector Bundles
121(7)
5.6 Examples - I. Formal Series and Holomorphic Functions on Disks
128(2)
5.7 Examples - II. Injectivity and Surjectivity of Morphisms
130(4)
5.8 Examples - III. Subgroups of Pre-Hilbert Spaces
134(3)
6 θ-Invariants of Infmite-Dimensional Hermitian Vector Bundles
137(18)
6.1 Limits of θ-Invariants
137(2)
6.2 Upper and Lower θ-Invariants
139(4)
6.3 Basic Properties
143(4)
6.4 Examples
147(8)
7 Summable Projective Systems of Hermitian Vector Bundles
155(22)
7.1 Main Theorem
155(1)
7.2 Preliminaries
156(3)
7.3 Summable Projective Systems and Associated Measures
159(3)
7.4 Proof of Theorem 7.3.4 - I. The Equality h0θ(E) = limi→+θ h0θ(Ei)
162(2)
7.5 Proof of Theorem 7.3.4 - II. Convergence of Measures
164(3)
7.6 A Converse Theorem
167(3)
7.7 Strongly Summable and θ-Finite Pro-Hermitian Vector Bundles
170(7)
8 Exact Sequences of Infinite-Dim. Hermitian Vector Bundles
177(42)
8.1 Short Exact Sequences of Infinite-Dimensional Hermitian Vector Bundles
178(2)
8.2 Short Exact Sequences and θ-Invariants of Pro-Hermitian Vector Bundles
180(8)
8.3 Strongly Summable Pro-Hermitian Vector Bundles
188(6)
8.4 A Vanishing Criterion
194(6)
8.5 The Category pro Vectok as an Exact Category
200(19)
9 Infinite-Dimensional Vector Bundles over Smooth Projective Curves
219(18)
9.1 Pro-vector Bundles over Smooth Curves
220(4)
9.2 The Invariants h0(C,E) and h0(C, E)
224(5)
9.3 Successive Extensions and Wild Pro-vector Bundles over Projective Curves
229(5)
9.4 A Vanishing Criterion
234(3)
10 Epilogue: Formal-Analytic Arithmetic Surfaces and Algebraization
237(68)
1.1 An Algebraicity Criterion for Smooth Formal Curves over Q
237(5)
1.2 Sections of Line Bundles and Algebraization
242(9)
1.3 Arithmetically Ample Hermitian Line Bundles and θ-Invariants
251(8)
1.4 Pointed Smooth Formal Curves
259(3)
1.5 Green's Functions, Capacitary Metrics and Schwarz Lemma
262(11)
1.6 Smooth Formal-Analytic Surfaces over Spec Ok
273(10)
1.7 Arithmetic Pseudo-concavity and Finiteness
283(6)
1.8 Arithmetic Pseudo-concavity and Algebraization
289(5)
1.9 The Isogeny Theorem for Elliptic Curves over Q
294(11)
A Large Deviations and Cramer's Theorem
305(24)
A.1 Notation and Preliminaries
306(2)
A.2 Lanford's Inequalities
308(4)
A.3 Cramer's Theorem
312(3)
A.4 An Extension of Cramer's Theorem
315(3)
A.5 Reformulation and Complements
318(11)
B Continuity of Linear Forms on Prodiscrete Modules
329(4)
B.1 Preliminary: Maximal Ideals, Discrete Valuation Rings, and Completions
329(2)
B.2 Continuity of Linear Forms on Prodiscrete Modules
331(2)
C Measures on Countable Sets and Their Projective Limits
333(8)
C.1 Finite Measures on Countable Sets
333(2)
C.2 Finite Measures on Projective Limits of Countable Sets
335(6)
D Exact Categories
341(6)
D.1 Definitions and Basic Properties
341(2)
D.2 The Derived Category of an Exact Category
343(4)
E Homorphic Sections of Line Bundles over Compact Complex Manifolds
347(8)
E.1 Spaces of Sections of Analytic Line Bundles and Multiplicity Bounds
347(2)
E.2 Proof of Proposition E. 1.2
349(2)
E.3 Proof of Proposition E. 1.3
351(4)
F John Ellipsoids and Finite-Dimensional Normed Spaces
355(4)
F.1 John Ellipsoids and John Euclidean Norms
355(1)
F.2 Properties of the John Norm
355(1)
F.3 Application to Lattices in Normed Real Vector Spaces
356(3)
Bibliography 359(10)
Index 369