Muutke küpsiste eelistusi

E-raamat: Thin-Film Organic Photonics: Molecular Layer Deposition and Applications

(Tokyo University of Technology, Japan)
  • Formaat: 370 pages
  • Sari: Optics and Photonics
  • Ilmumisaeg: 19-Dec-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351833851
  • Formaat - EPUB+DRM
  • Hind: 101,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 370 pages
  • Sari: Optics and Photonics
  • Ilmumisaeg: 19-Dec-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351833851

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Among the many atomic/molecular assembling techniques used to develop artificial materials, molecular layer deposition (MLD) continues to receive special attention as the next-generation growth technique for organic thin-film materials used in photonics and electronics.

Thin-Film Organic Photonics: Molecular Layer Deposition and Applications describes how photonic/electronic properties of thin films can be improved through MLD, which enables precise control of atomic and molecular arrangements to construct a wire network that achieves "three-dimensional growth". MLD facilitates dot-by-dotor molecule-by-moleculegrowth of polymer and molecular wires, and that enhanced level of control creates numerous application possibilities.

Explores the wide range of MLD applications in solar energy and optics, as well as proposed uses in biomedical photonics

This book addresses the prospects for artificial materials with atomic/molecular-level tailored structures, especially those featuring MLD and conjugated polymers with multiple quantum dots (MQDs), or polymer MQDs. In particular, the author focuses on the application of artificial organic thin films to:











Photonics/electronics, particularly in optical interconnects used in computers Optical switching and solar energy conversion systems Bio/ medical photonics, such as photodynamic therapy Organic photonic materials, devices, and integration processes

With its clear and concise presentation, this book demonstrates exactly how MLD enables electron wavefunction control, thereby improving material performance and generating new photonic/electronic phenomena.

Arvustused

deals with interesting topics about a new technique for highly-ordered structures and high-performance optoelectronic properties of organic molecules... . -- Atsushi Kubono, Shizuoka University ... well-written with lucid and elaborate presentation of molecular layer deposition technique, systematic procedures of device fabrication and their useful applications. This is clearly a handy and helpful book to the researchers who are into organic photonics and related other applied fields and also useful for those just starting in the field. G. Vijaya Prakash

deals with interesting topics about a new technique for highly-ordered structures and high-performance optoelectronic properties of organic molecules... . Atsushi Kubono, Shizuoka University

Preface xv
Chapter 1 Introduction
1(6)
Chapter 2 Atomic/Molecular Assembling Technologies
7(42)
2.1 Similarity of Electronic Waves to Light Waves
7(2)
2.2 Scanning Tunneling Microscopy (STM)
9(3)
2.2.1 Atomic Manipulation Process
9(2)
2.2.2 Detection of Wavefunctions
11(1)
2.2.3 Quantum Corral and Quantum Mirage
12(1)
2.3 Molecular Beam Epitaxy (MBE)
12(5)
2.3.1 Growth Mechanism of MBE
12(3)
2.3.2 High-Electron-Mobility Transistors
15(1)
2.3.3 Multiple Quantum Well Light Modulators
15(2)
2.3.4 Relationships to Other Growth Techniques
17(1)
2.4 Atomic Layer Deposition (ALD)
17(6)
2.5 Plasma Chemical Vapor Deposition (Plasma CVD)
23(14)
2.5.1 Amorphous Superlattices
23(1)
2.5.2 Characterization of the a-SiNx: H/a-Si: H Interface
24(1)
2.5.2.1 Sample Preparation
24(1)
2.5.2.2 Measurements
24(2)
2.5.2.3 Optical/Electrical Properties of a-SiNx: H layers
26(1)
2.5.2.4 Photoluminescence Spectra
26(5)
2.5.3 Transfer-Doping and Electron-Trapping Effects in a-SiNx: H/a-Si: H Superlattices
31(1)
2.5.3.1 Fabrication and Measurement Procedures
31(1)
2.5.3.2 Transfer Doping
32(2)
2.5.3.3 Electron Trapping
34(3)
2.6 Sputtering
37(9)
2.6.1 Electrochromism in WOx Thin Films
37(1)
2.6.2 Enhancement of Coloration Efficiency in WOx with Controlled Film Structures
38(8)
2.7 Vacuum Deposition Polymerization
46(1)
References
46(3)
Chapter 3 Fundamentals of Molecular Layer Deposition (MLD)
49(60)
3.1 Concept of MLD
49(4)
3.1.1 MLD Utilizing Chemical Reactions
49(1)
3.1.2 MLD Utilizing Electrostatic Force
50(2)
3.1.3 MLD with Molecule Groups
52(1)
3.2 MLD Equipment
53(3)
3.2.1 Gas-Phase MLD
53(1)
3.2.1.1 K Cell-Type MLD
53(1)
3.2.1.2 Carrier Gas-Type MLD
53(3)
3.2.2 Liquid-Phase MLD
56(1)
3.2.2.1 Fluidic-Circuit Type MLD
56(1)
3.3 Proof of Concept of MLD
56(11)
3.3.1 MLD Utilizing Chemical Reactions
56(1)
3.3.1.1 Polyimide
57(4)
3.3.1.2 Conjugated Polymers
61(1)
3.3.2 MLD Utilizing Electrostatic Force
62(1)
3.3.2.1 Stacked Structures of p-Type and n-Type Dye Molecules on ZnO Surfaces
62(4)
3.3.2.2 Molecular Crystals
66(1)
3.4 MLD with Controlled Growth Orientations and Locations
67(10)
3.4.1 Growth Control by Seed Cores
68(1)
3.4.1.1 MLD from SAM
68(2)
3.4.1.2 Organic CVD from SAM
70(4)
3.4.2 Monomolecular Step Polymer Wire Growth from Seed Cores
74(3)
3.5 High-Rate MLD
77(4)
3.5.1 Influences of Molecular Gas Flow on Polymer Film Growth
78(1)
3.5.2 Domain-Isolated MLD
79(2)
3.6 Selective Wire Growth
81(19)
3.6.1 Selective Growth on Surfaces with Patterned Treatment
82(4)
3.6.2 Selectively-Aligned Growth on Atomic-Scale Anisotropic Structures
86(2)
3.6.2.1 Concept
88(1)
3.6.2.2 Growth
88(1)
3.6.2.3 Optical Characterization for Selective Alignment of Polymer Wires
89(5)
3.6.3 Electric-Field-Assisted Growth
94(4)
3.6.4 Head-to-Tail Growth
98(2)
3.7 Mass Production Process for Nano-Scale Devices Fabricated by MLD
100(1)
3.8 Examples of Goals Achieved by MLD
100(6)
3.8.1 Functional Organic Devices
101(1)
3.8.2 Integrated Nano-Scale Optical Circuits
102(1)
3.8.3 Molecular Circuits
103(3)
References
106(3)
Chapter 4 Fabrication of Multiple-Quantum Dots (MQDs) by MLD
109(16)
4.1 Fundamentals of Quantum Dots
109(4)
4.2 Quantum Dot Construction in Conjugated Polymers by MLD
113(11)
4.2.1 MQD Fabrication by Arranging Two Kinds of Molecules
113(4)
4.2.2 MQDs Fabricated by Arranging Three Kinds of Molecules
117(7)
References
124(1)
Chapter 5 Theoretical Predictions of Electro-Optic (EO) Effects in Polymer Wires
125(32)
5.1 Molecular Orbital Method
125(3)
5.2 Nonlinear Optical Effects
128(5)
5.3 Procedure for Evaluation of the EO Effects by the Molecular Orbital Method
133(2)
5.4 Qualitative Guidelines for Improving Optical Nonlinearities
135(2)
5.4.1 For Second-Order Optical Nonlinearity
136(1)
5.4.2 For Third-Order Optical Nonlinearity
137(1)
5.5 Enhancement of Second-Order Optical Nonlinearity by Controlling Wavefunctions
137(11)
5.5.1 Effects of Wavef'unction Shapes
138(4)
5.5.2 Effects of Conjugated Wire Lengths
142(2)
5.5.3 Relationship between Wavefunctions and Transition Dipole Moments
144(1)
5.5.4 Optical Nonlinearity in Conjugated Wires with Poly-AM Backbones
145(2)
5.5.5 Enhancement of Optical Nonlinearity by Sharpening Absorption Bands
147(1)
5.6 Enhancement of Third-Order Optical Nonlinearity by Controlling Wavefunctions
148(2)
5.7 Multiple Quantum Dots (MQDs) in Conjugated Polymer Wires
150(5)
References
155(2)
Chapter 6 Design of Integrated Optical Switches
157(26)
6.1 Variable Well Optical ICs (VWOICs) and Waveguide Prism Deflectors (WPDs)
159(8)
6.1.1 Design of VWOIC
161(1)
6.1.2 Design of WPD Optical Switch Utilizing the Pockels Effect
162(1)
6.1.2.1 Simulation Procedure
162(1)
6.1.2.2 Structural Model
163(1)
6.1.2.3 Simulated Performance
164(3)
6.1.3 Design of WPD Optical Switch Utilizing the Kerr Effect
167(5)
6.1.3.1 Simulation Procedure
167(1)
6.1.3.2 Structural Model
167(2)
6.1.3.3 Simulated Performance
169(3)
6.1.4 Impact of Polymer MQDs on Optical Switch Performance
172(2)
6.1.5 Future Integration Issues
173(1)
6.1.6 Experimental Demonstration of WPD Utilizing PLZT
174(1)
6.2 Nano-Scale Optical Switches
174(8)
6.2.1 Ring Resonator Optical Switches
174(3)
6.2.2 Bandwidth Limit in Photonic Crystal Waveguides
177(2)
6.2.3 Polymer MQDs in Nano-Scale Optical Switches
179(3)
References
182(1)
Chapter 7 Organic Photonic Materials, Devices, and Integration Processes
183(72)
7.1 Electro-Optic (EO) Materials
183(23)
7.1.1 Characterization Procedure for the Pockels Effect in Organic Thin Films
184(2)
7.1.2 Molecular Crystals
186(1)
7.1.2.1 SPCD
186(7)
7.1.2.2 MNA
193(4)
7.1.3 Poled Polymers and Optical Switches
197(1)
7.1.3.1 EO Effects in Poled Polymers
197(2)
7.1.3.2 EO Polyimide
199(1)
7.1.3.3 Optical Switches Using EO Polyimide
200(2)
7.1.3.4 3-D Optical Switches
202(4)
7.2 Optical Waveguides Fabricated by Selective Wire Growth
206(9)
7.2.1 EO Waveguides Fabricated by Electric-Field-Assisted Growth
206(1)
7.2.1.1 Epoxy-Amine Polymer
207(2)
7.2.1.2 Poly-Azomethine
209(3)
7.2.2 Conjugated Polymer Waveguides Fabricated on Anisotropic Surface Structures
212(1)
7.2.3 Acceptor Substitution into Conjugated Polymer Wires
213(2)
7.3 Nano-Scale Waveguides of Photo-Induced Refractive Index Increase Sol-Gel Materials
215(9)
7.3.1 Fabrication Process
216(1)
7.3.2 Linear Waveguides
217(3)
7.3.3 S-Bending and Y-Branching Waveguides
220(3)
7.3.4 Fine 3-D Structures for All-Air-Clad Waveguides
223(1)
7.4 Self-Organized Lightwave Network (SOLNET) for Self-Aligned Optical Couplings and Vertical Waveguides
224(10)
7.4.1 The SOLNET Concept
224(4)
7.4.2 Proof of Concept of SOLNET
228(1)
7.4.2.1 One-Beam-Writing SOLNET
228(1)
7.4.2.2 Two-Beam-Writing SOLNET
229(1)
7.4.2.3 R-SOLNET
230(4)
7.5 Resource-Saving Heterogeneous Integration
234(11)
7.5.1 Concept of PL-Pack with SORT
234(2)
7.5.2 Advantages of PL-Pack with SORT
236(1)
7.5.2.1 Resource Saving
237(2)
7.5.2.2 Process Simplicity
239(1)
7.5.2.3 Thermal Stress Reduction
239(1)
7.5.3 Experimental Demonstrations of SORT
240(1)
7.5.3.1 SORT of Polymer Waveguide Lenses
240(2)
7.5.3.2 SORT of Optical Waveguides
242(3)
7.6 Optical Waveguide Films with Vertical Mirrors and 3-D Optical Circuits
245(6)
7.6.1 Optical Waveguide Films with Vertical Mirrors
245(1)
7.6.2 3-D Optical Circuits
246(1)
7.6.2.1 Type 1: Stacked Waveguide Films with 45° Mirrors
247(2)
7.6.2.2 Type 2: Waveguide Films with Vertical Waveguides of SOLNET
249(2)
References
251(4)
Chapter 8 Applications to Optical Interconnects and Optical Switching Systems
255(30)
8.1 3-D Optoelectronic (OE) Platform Based on Scalable Film Optical Link Module (S-FOLM)
255(1)
8.2 Optical Interconnects within Boxes
256(6)
8.2.1 Multilayer OE Boards and 3-D Stacked OE Multi-Chip Modules
257(1)
8.2.2 OE Amplifier/Driver-Less Substrate (OE-ADLES)
258(2)
8.2.3 Impact of Polymer MQDs on OE-ADLES
260(2)
8.3 3-D Micro Optical Switching System (3D-MOSS)
262(19)
8.3.1 The 3D-MOSS Concept
263(1)
8.3.2 Implementation of SOLNET in 3D-MOSSs
264(3)
8.3.3 Structural Model of 3D-MOSS
267(5)
8.3.4 Optical Z-Connections and Optical Switches
272(1)
8.3.4.1 Optical Z-Connections
272(1)
8.3.4.2 Optical Switches
273(1)
8.3.5 Predicted Performance of 3D-MOSS
274(1)
8.3.5.1 Size and Insertion Loss
274(5)
8.3.5.2 Electrical Characteristics
279(1)
8.3.6 Impact of Nano-Scale Waveguides and Polymer MQDs on 3D-MOSS Performance
280(1)
References
281(4)
Chapter 9 Applications to Solar Energy Conversion Systems
285(52)
9.1 Sensitized Photovoltaic Devices
285(25)
9.1.1 Concept of Multidye Sensitization and Pofymer-MQD Sensitization
285(4)
9.1.2 Waveguide-Type Photovoltaic Device Concept
289(3)
9.1.3 Proof of Concept of Multidye Sensitization by Liquid-Phase MLD
292(1)
9.1.3.1 Spectral Sensitization of ZnO by p/n-Stacked Structures
292(10)
9.1.3.2 Sensitization by p/n-Stacked Structures Constructed by Liquid-Phase MLD
302(4)
9.1.4 Proof of Concept of Polymer-MQD Sensitization
306(1)
9.1.5 Proof of Concept of Waveguide-Type Photovoltaic Devices
307(3)
9.2 Integrated Solar Energy Conversion Systems
310(20)
9.2.1 Concept of Integrated Solar Energy Conversion Systems
310(1)
9.2.2 The Integrated Photonic/Electronic/Chemical System (IPECS)
311(2)
9.2.3 Structures of Light Beam Collecting Films
313(2)
9.2.4 Design of Light Beam Collecting Films
315(1)
9.2.4.1 Simulation Procedure
316(1)
9.2.4.2 Tapered Vertical/Horizontal Waveguide-Type Light Beam Collecting Films
317(2)
9.2.4.3 Multilayer Waveguide-Type Light Beam Collecting Films
319(11)
9.2.5 Possible Fabrication Process
330(1)
9.2.6 Impact of Polymer MQDs on Integrated Solar Energy Conversion Systems
330(1)
9.3 Novel Structures of Photovoltaic and Photosynthesis Devices
330(3)
9.4 Waveguide-Type Photovoltaic Devices with a Charge Storage/Photosynthesis Function
333(1)
References
334(3)
Chapter 10 Proposed Applications to Biomedical Photonics
337(10)
10.1 Therapy for Cancer Utilizing Liquid-Phase MLD
337(3)
10.1.1 Photodynamic Therapy Using Two-Photon Absorption with Different Wavelenghts
337(3)
10.1.2 In-Situ Synthesis of a Drug within Human Bodies
340(1)
10.2 Indicator for Reflective or Emissive Targets Utilizing R-SOLNET
340(2)
10.3 Integrated Photoluminescence Analysis Chips
342(1)
10.4 Molecular Recognition Chip
343(1)
References
344(3)
Epilogue 347(2)
Index 349
Tokyo University of Technology, School of Computer Science, Tokyo, Japan