Muutke küpsiste eelistusi

E-raamat: Thin Film Shape Memory Alloys: Fundamentals and Device Applications

Edited by (University of Tsukuba, Japan), Edited by (Heriot-Watt University, Edinburgh), Edited by (Nanyang Technological University, Singapore)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Sep-2009
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9780511629846
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 118,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Sep-2009
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9780511629846
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This book, the first dedicated to this exciting and rapidly growing field, enables readers to understand and prepare high-quality, high-performance TiNi shape memory alloys (SMAs). It covers the properties, preparation and characterization of TiNi SMAs, with particular focus on the latest technologies and applications in MEMS and biological devices. Basic techniques and theory are covered to introduce new-comers to the subject, whilst various sub-topics, such as film deposition, characterization, post treatment, and applying thin films to practical situations, appeal to more informed readers. Each chapter is written by expert authors, providing an overview of each topic and summarizing all the latest developments, making this an ideal reference for practitioners and researchers alike"--Provided by publisher.



The first dedicated book describing the properties, preparation, characterization and device applications of TiNi-based shape memory alloys.

This book, the first dedicated to this exciting and rapidly growing field, enables readers to understand and prepare high-quality, high-performance TiNi shape memory alloys (SMAs). It covers the properties, preparation and characterization of TiNi SMAs, with particular focus on the latest technologies and applications in MEMS and biological devices. Basic techniques and theory are covered to introduce new-comers to the subject, whilst various sub-topics, such as film deposition, characterization, post treatment, and applying thin films to practical situations, appeal to more informed readers. Each chapter is written by expert authors, providing an overview of each topic and summarizing all the latest developments, making this an ideal reference for practitioners and researchers alike.

Muu info

The first dedicated book describing the properties, preparation, characterization and device applications of TiNi-based shape memory alloys.
List of contributors
xiii
Preface xv
Abstracts of chapters xviii
Overview of sputter-deposited TiNi based thin films
1(72)
Abstract
1(1)
Introduction
1(4)
Fabrication and characterization methods
5(44)
Film deposition
5(4)
TiNi film characterization
9(21)
TiNiX ternary alloy thin films
30(9)
Residual stress and stress evolution
39(1)
Frequency response
40(1)
Adhesion and interfacial analysis
41(1)
Stability, degradation and fatigue
41(4)
Film thickness effect
45(1)
Temperature memory effect
46(1)
Nanoscale mechanical evaluation
47(1)
Functionally graded and composite TiNi based films
48(1)
MEMS applications of TiNi thin films
49(15)
Comparison of various microactuation mechanisms
49(2)
Modeling and optimal design of TiNi thin film microactuators
51(1)
Freestanding microactuators based on a two-way shape memory effect
52(4)
TiNi diaphragms, micropump and microvalves
56(4)
Microgrippers
60(2)
Microsensors, microswitches and microrelays
62(1)
Other applications
63(1)
Summary
64(9)
References
65(8)
Martensitic transformation in TiNi alloys
73(15)
Abstract
73(1)
Introduction
73(1)
TiNi phase diagram
74(1)
Crystallography of martensitic transformation
74(3)
Transformation strain
77(2)
Transformation temperatures
79(2)
Shape memory and superelasticity based on martensitic transformation
81(1)
Deformation behavior
82(4)
Summary
86(2)
References
86(2)
Deposition techniques for TiNi thin film
88(22)
Abstract
88(1)
Introduction to methods of making TiNi thin film
88(1)
Sputter deposition
89(1)
Description of the sputtering process
90(6)
Characterization of thin film by electrical resistivity and stress-strain measurement
96(1)
Methods of joining thin film
96(3)
Resistance welding
98(1)
Laser welding
99(1)
Ultrasonic bonding
99(1)
TiNi thin film and MEMS processes
99(2)
Heat treatment
99(1)
Patterning TiNi thin film
100(1)
Sacrificial layer
100(1)
Fabrication of miniature actuators
101(1)
Valve poppet actuators
101(1)
Bending-beam actuators
101(1)
Fabrication of intravascular medical devices
101(5)
Planar sputtering on a three-dimensional substrate
103(1)
Sputtering using the multiple-layering method
104(2)
Literature of TiNi thin film
106(1)
Summary
107(3)
Acknowledgements
107(1)
References
108(2)
TiNi multilayer thin films
110(14)
Abstract
110(1)
Introduction
110(1)
Fabrication of multi-layer TiNi thin films
111(1)
Alloying process of TiNi multilayer thin films
112(6)
DSC measurements
112(1)
XRD measurements
113(1)
TEM observation
114(4)
Shape memory properties and mechanical properties
118(3)
Summary
121(3)
References
121(3)
Crystallization and microstructural development
124(21)
Abstract
124(1)
Introduction
124(1)
Crystallization
125(3)
Crystallization principles
125(1)
Crystallization theory (Johnson-Mehl-Avrami-Kolmogorov theory)
126(2)
Crystallization kinetics of TiNi thin films
128(9)
Experimental techniques
129(3)
A background of TiNi crystallization studies
132(2)
Factors that influence crystallization
134(3)
Microstructural development
137(3)
Crystallography of martensite and austenite
137(1)
Compositional effects
137(3)
Summary
140(5)
References
140(5)
Mechanical properties of TiNi thin films
145(21)
Abstract
145(1)
Shape memory behavior of TiNi thin films
145(1)
Shape memory behavior of Ni-rich TiNi thin films
146(6)
Shape memory behavior of Ti-rich TiNi thin films
152(6)
Stability of shape memory behavior
158(1)
Two-way shape memory effect
158(1)
Superelasticity
159(1)
Stress-strain curves of TiNi thin films
160(1)
Thickness effect of shape memory behavior
161(1)
Summary
162(4)
References
163(3)
Stress and surface morphology evolution
166(27)
Abstract
166(1)
Introduction
166(2)
Film stress: measurement and characterization
168(2)
Curvature method
168(1)
X-ray diffraction
169(1)
Micro-Raman spectroscopy
170(1)
Stress and strain evolution in TiNi based films
170(7)
Stress evolution in shape memory events
170(2)
Factors affecting stress evolution
172(5)
Stress induced surface morphology changes
177(6)
Transition between surface relief and wrinkling
177(3)
Reversible trenches
180(1)
Theoretical analysis of stress-induced wrinkling and trenches
181(2)
Novel methods in surface morphology characterization
183(6)
Atomic force microscopy
184(1)
Photoemission electron microscopy
185(4)
Summary
189(4)
Acknowledgement
190(1)
References
190(3)
Ion implantation processing and associated irradiation effects
193(33)
Abstract
193(1)
Introduction
193(1)
Ion irradiation of SMA TiNi films
194(18)
Physics of ion irradiation
194(2)
Heavy ion irradiation (5 MeV Ni)
196(12)
High energy ion irradiation - electronic stopping effects
208(3)
Linking the high energy ion experiments to the electronic stopping effects in 5 MeV Ni ions
211(1)
Using ion beam modification to make novel actuator materials
212(11)
Actuator design concept
213(3)
Dependence of actuator motion on irradiation dose and temperature
216(5)
Cyclic fatigue, decay of two-way shape strains
221(2)
Summary
223(3)
References
224(2)
Laser post-annealing and theory
226(35)
Abstract
226(1)
Introduction
226(2)
Experimental demonstration
228(3)
Theories behind laser annealing
231(26)
Absorption of laser irradiation
231(5)
Backside CO2 laser annealing
236(11)
Direct laser annealing
247(8)
Annealing of Ni/Ti multilayer thin films
255(2)
Summary
257(4)
Acknowledgements
258(1)
References
258(3)
Overview of thin film shape memory alloy applications
261(14)
Abstract
261(1)
Introduction to TiNi thin film applications
261(1)
Properties suitable for applications
262(5)
Mechanical properties
263(2)
Temperature effect of adding a third component to TiNi thin film
265(1)
Corrosion behavior of thin films
265(1)
Biocompatibility of thin films
266(1)
Thermo mechanical applications of thin films
267(4)
Microactuators
267(1)
Fluid control
268(1)
Microswitches
269(2)
Superelastic applications and medical devices
271(1)
Summary
272(3)
Acknowledgements
273(1)
References
273(2)
Theory of SMA thin films for microactuators and micropumps
275(25)
Abstract
275(1)
Introduction
275(3)
A theory of pressurized thin film
278(2)
Effective behavior
280(6)
Single crystal film
280(4)
Polycrystalline film
284(2)
Simulation of thin film microstructure
286(6)
Free energy
286(2)
Evolution of microstructure under driving forces
288(1)
Self-accommodation patterns
289(3)
Application to micropumps
292(3)
Single crystal micropumps
292(1)
Polycrystalline micropumps
293(2)
Summary
295(5)
Acknowledgements
296(1)
References
296(4)
Binary and ternary alloy film diaphragm microactuators
300(21)
Abstract
300(1)
Introduction
300(1)
Shape memory behaviour of TiNi thin films
301(4)
Fabrication and characterization methods
305(4)
Microactuators using the R-phase of TiNi and the M-phase of TiNiPd
309(5)
Microactuators using the R-phase of TiNi
309(1)
Microactuators using the M-phase of TiNiPd
310(1)
Dynamic actuation of microactuators
311(3)
Microactuators using the M-phase of Ti-Ni-Cu
314(4)
Summary
318(3)
References
318(3)
TiNi thin film devices
321(25)
Abstract
321(1)
Introduction
321(2)
Fabrication of TiNi thin films
323(1)
Thin film properties
323(1)
TiNi thin film devices
324(17)
Mechanical devices
325(11)
Biomedical devices
336(5)
Summary
341(5)
References
341(5)
Shape memory microvalves
346(24)
Abstract
346(1)
Introduction
346(1)
Overview
347(3)
Valve layout
350(4)
SMA materials
354(1)
Modelling and simulation aspects
355(5)
Fabrication
360(2)
Performance characteristics
362(5)
Polymer seat microvalves
362(4)
Microfluidic controller
366(1)
Summary
367(3)
References
368(2)
Superelastic thin films and applications for medical devices
370(15)
Abstract
370(1)
Introduction
370(2)
Superelasticity in thin films
372(3)
Fabrication of planar superelastic thin films
375(2)
Patterning of planar films using lithography and etching
377(1)
Fabrication of superelastic thin film tubes
378(3)
Patterning of non-planar films using lithography and etching
381(1)
Summary
382(3)
References
383(2)
Fabrication and characterization of sputter-deposited TiNi superelastic microtubes
385(18)
Abstract
385(1)
Introduction
385(1)
Fabrication and characterization method
386(2)
Sputter deposition system
386(1)
Characterization of shape memory behaviour
387(1)
TiNi microtube fabricated by a two-step deposition method
388(3)
Cross-sectional microstructure
388(2)
Shape memory behavior and fracture strength
390(1)
Effect of deposition angle β
391(6)
Film thickness
391(2)
Surface roughness
393(3)
Columnar grain formation
396(1)
Fabrication of high-strength superelastic TiNi microtubes
397(4)
Effect of rotation speed on the microstructure
397(1)
Effect of rotation speed on shape memory behaviour and fracture strength
397(3)
Superelasticity
400(1)
Summary and remarks
401(2)
Acknowledgement
401(1)
References
402(1)
Thin film shape memory microcage for biological applications
403(23)
Abstract
403(1)
Introduction
403(3)
Freestanding TiNiCu microcage
406(5)
TiNi/DLC microcage fabrication
411(8)
Design considerations
411(4)
Fabrication and characterization
415(4)
Biological study of the TiNi film
419(3)
Summary
422(4)
Acknowledgement
423(1)
References
423(3)
Shape memory thin film composite microactuators
426(11)
Abstract
426(1)
Introduction
426(1)
Mechanism of shape memory composites
427(1)
Fabrication of shape memory composites
427(1)
Bistable SMA composites
428(3)
Phase-coupled SMA composites
431(2)
Applications of shape memory thin film composites
433(2)
Summary
435(2)
References
435(2)
TiNi thin film shape memory alloys for optical sensing applications
437(20)
Abstract
437(1)
Introduction
437(3)
Optical application based on the surface morphology change
440(4)
Optical application based on free standing TiNi film
444(2)
Optical application based on bimorph structure
446(5)
TiNi/Si bimorph structure
446(4)
TiNi/Si3N4 microcantilever
450(1)
TiNi film for infrared image application
451(4)
Summary
455(2)
Acknowledgement
455(1)
References
455(2)
Index 457
Shuichi Miyazaki is a Professor at the Institute of Materials Science, University of Tsukuba, Japan, where he has worked since 1979 after obtaining his Ph.D. in Materials Science and Engineering from Osaka University. He has received numerous awards, including the Academic Deed Award from the Japan Institute of Metals in 1995 and the Yamazaki-Teiichi Prize from the Foundation for Promotion of Material Science and Technology of Japan in 2002, as well as co-authoring 24 books and over 350 technical and review papers in the field of materials science especially on shape memory alloys. Yong Qing Fu is a Lecturer in the Department of Mechanical Engineering at the Heriot-Watt University, Edinburgh. He obtained his Ph.D degree from Nanyang Technological University (NTU), Singapore in 1999 and his prior positions have included Research Fellow at Singapore-MIT Alliance, NTU and Research Associate in EDM Group (Electronic Devices and Materials) at Cambridge University. He has extensive experience in thin films, surface coatings, microelectromechanical systems (MEMS), shape memory alloys, smart materials and Nanotechnology, with over 100 journal papers. Wei Min Huang is an Associate Professor at the School of Mechanical and Aerospace Engineering at Nanyang Technological University (NTU), Singapore. He was awarded his Ph.D. from Cambridge University in 1998 and has since published over 80 journal papers. His research interests include shape memory materials, actuators, advanced technologies and materials, surface patterning and materials selection.