Muutke küpsiste eelistusi

E-raamat: Thinking Data Science: A Data Science Practitioner's Guide

  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This definitive guide to Machine Learning projects answers the problems an aspiring or experienced data scientist frequently has: Confused on what technology to use for your ML development? Should I use GOFAI, ANN/DNN or Transfer Learning? Can I rely on AutoML for model development? What if the client provides me Gig and Terabytes of data for developing analytic models? How do I handle high-frequency dynamic datasets? This book provides the practitioner with a consolidation of the entire data science process in a single “cheat sheet”.

The challenge for data science is to extract meaningful information from huge datasets that will help to create better strategies for businesses. Many Machine Learning algorithms and Neural Networks are designed to process such datasets. For a data scientist, it is a daunting decision as to which algorithm to use for a given dataset. Although there is no single answer to this question, a systematic approach to problem solving is necessary. This book describes the various ML algorithms conceptually and defines/discusses a process in the selection of ML/DL models. The consolidation of available algorithms and techniques for designing efficient ML models is the key aspect of this book. Thinking Data Science will help practising data scientists, academicians, researchers, and students who want to build ML models using the correct algorithms and appropriate architectures, whether the data be small or big.

 

Chapter. 1. Data Science Process.
Chapter. 2. Dimensionality Reduction
- Creating Manageable Training Datasets.
Chapter. 3. Classical Algorithms -
Over-view.
Chapter. 4. Regression Analysis.
Chapter. 5. Decision Tree.-
Chapter. 6. Ensemble - Bagging and Boosting.
Chapter. 7. K-Nearest
Neighbors.
Chapter. 8. Naive Bayes.
Chapter.
9. Support Vector Machines: A
supervised learning algorithm for Classification and Regression.
Chapter.
10. Clustering Overview.
Chapter. 11. Centroid-based Clustering.
Chapter.
12. Connectivity-based Clustering.
Chapter. 13. Gaussian Mixture Model.-
Chapter. 14. Density-based.
Chapter. 15.- BIRCH.
Chapter. 16. CLARANS.-
Chapter. 17. Affinity Propagation Clustering.
Chapter. 18. STING.
Chapter.
19. CLIQUE.
Chapter. 20. Artificial Neural Networks.
Chapter. 21. ANN-based
Applications.
Chapter. 22. Automated Tools.
Chapter. 23. DataScientists
Ultimate Workflow.
Poornachandra Sarang, in his IT career spanning four decades, has been consulting large IT organizations on the design and architecture of systems using state-of-the-art technologies. He has authored several books covering a wide range of emerging technologies. Dr. Sarang is a Ph.D. advisor for Computer Science and Engineering and is on the thesis advisory committee for aspiring doctoral candidates. He has designed and delivered courses/curricula for universities at the postgraduate level, including courses and workshops on emerging technologies for industry. He is a known face at technical and research conferences delivering both keynote and technical talks.