Muutke küpsiste eelistusi

E-raamat: Thirty Five Years of Automating Mathematics

  • Formaat: PDF+DRM
  • Sari: Applied Logic Series 28
  • Ilmumisaeg: 17-Apr-2013
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9789401702539
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Applied Logic Series 28
  • Ilmumisaeg: 17-Apr-2013
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9789401702539
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Computer scientists and mathematicians in the U.S., Europe, and Israel discuss the use of mechanization and automation for checking mathematical proofs and theorems, which was pioneered by N.G. de Bruijn in the 1960s. In the first paper, de Bruijn himself uses his experience of automating mathematics to reason about the human mind. Other contributors discuss such topics as recent results in type theory and their relation to automath; the use of Hoare logic with explicit contexts for deriving correct programs; and termination in ACL2 using multiset relations. Annotation ©2004 Book News, Inc., Portland, OR (booknews.com)

N.G. de Bruijn was a well established mathematician before deciding in 1967 at the age of 49 to work on a new direction related to Automating Mathematics. In the 1960s he became fascinated by the new computer technology and decided to start the Automath project where he could check, with the help of the computer, the correctness of books on mathematics. Through his work on Automath de Bruijn started a revolution in using the computer for verification, and since, we have seen more and more proof-checking and theorem-proving systems. Automath was written in Algol 60 and implemented on the primitive computers of the sixties. Thirty years on, both technology and theory have evolved a lot leading to impressive new directions in using the computer for manipulating and checking mathematics. This volume is a collection of papers with a personal flavour. It consists of 11 articles which propose interesting variations to or examples of mechanising mathematics and illustrate differ developments in symbolic computation in the past 35 years. The first paper is by de Bruijn himself where he uses his experience of automating mathematics to reason about the human mind. After that a number of intriguing articles have been contributed by amongst others Henk Barendregt, who proposes a mathematical proof language between informal and formalised mathematics which helps make proof assistants more user friendly, and Robert Constable, explaining how Automath's telescopes, books and definitions compare to recent developments in computational type theory made by his Nuprl group. The volume further includes a strong argumentation by Arnon Avron that for automated reasoning, there is an interesting logic, somewhere strictly between first and second order logic, determined essentially by an analysis of transitive closure, yielding induction; and Murdoch Gabbay presenting an interesting generalisation of Fraenkel-Mostowski (FM) set theory within higher-order logic, and applying it to model Milner's p-calculus.
Contributors vii
Editorial Preface 1(8)
Fairouz Kamareddine
A Mathematical Model for Biological Memory and Consciousness
9(16)
N. G. de Bruijn
Towards an Interactive Mathematical Proof Mode
25(12)
Henk Barendregt
Recent Results in Type Theory and their Relationship to Automath
37(12)
Robert L. Constable
Linear Contexts, Sharing Functors: Techniques for Symbolic Computation
49(22)
Gerard Huet
De Bruijn's Automath and Pure Type Systems
71(54)
Fairouz Kamareddine
Twan Laan
Rob Nederpelt
Hoare Logic with Explicit Contexts
125(24)
Michael Franssen
Transitive Closure and the Mechanization of Mathematics
149(24)
Arnon Avron
Polymorphic Type-checking for the Ramified Theory of Types of Principia Mathematica
173(44)
M. Randall Holmes
Termination in ACL2 using Multiset Relations
217(30)
J. L. Ruiz-Reina
J. A. Alonso
M. J. Hidalgo
F. J. Martin-Mateos
The π-Calculus in FM
247(24)
Murdoch J. Gabbay
Proof Development with Ωmega: The Irrationality of √2
271(44)
Jorg Siekmann
Christoph Benzmuller
Armin Fiedler
Andreas Meier
Immanuel Normann
Martin Pollet
Index 315