Muutke küpsiste eelistusi

E-raamat: Time-Domain Electromagnetic Reciprocity in Antenna Modeling

  • Formaat - EPUB+DRM
  • Hind: 138,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Describes applications of time-domain EM reciprocity and the Cagniard-deHoop technique to achieve solutions to fundamental antenna radiation and scattering problems

This book offers an account of applications of the time-domain electromagnetic (TD EM) reciprocity theorem for solving selected problems of antenna theory. It focuses on the development of both TD numerical schemes and analytical methodologies suitable for analyzing TD EM wave fields associated with fundamental antenna topologies.

Time-Domain Electromagnetic Reciprocity in Antenna Modeling begins by applying the reciprocity theorem to formulate a fundamentally new TD integral equation technique – the Cagniard-deHoop method of moments (CdH-MoM) – regarding the pulsed EM scattering and radiation from a thin-wire antenna. Subsequent chapters explore the use of TD EM reciprocity to evaluate the impact of a scatterer and a lumped load on the performance of wire antennas and propose a straightforward methodology for incorporating ohmic loss in the introduced solution methodology. Other topics covered in the book include the pulsed EM field coupling to transmission lines, formulation of the CdH-MoM concerning planar antennas, and more. In addition, the book is supplemented with simple MATLAB code implementations, so that readers can test EM reciprocity by conducting (numerical) experiments. In addition, this text:

  • Applies the thin-sheet boundary conditions to incorporate dielectric, conductive and plasmonic properties of planar antennas
  • Provides illustrative numerical examples that validates the described methodologies
  • Presents analyzed problems at a fundamental level so that readers can fully grasp the underlying principles of solution methodologies
  • Includes appendices to supplement material in the book

Time-Domain Electromagnetic Reciprocity in Antenna Modeling is an excellent book for researchers and professors in EM modeling and for applied researchers in the industry.

Preface xiii
Acronyms xv
1 Introduction
1(14)
1.1 Synopsis
2(3)
1.2 Prerequisites
5(10)
1.2.1 One-Sided Laplace Transformation
6(2)
1.2.2 Lorentz's Reciprocity Theorem
8(7)
2 Cagniard-Dehoop Method Of Moments For Thin-Wire Antennas
15(10)
2.1 Problem Description
15(1)
2.2 Problem Formulation
16(2)
2.3 Problem Solution
18(2)
2.4 Antenna Excitation
20(5)
2.4.1 Plane-Wave Excitation
20(1)
2.4.2 Delta-Gap Excitation
21(1)
Illustrative Example
22(3)
3 Pulsed Em Mutual Coupling Between Parallel Wire Antennas
25(4)
3.1 Problem Description
25(1)
3.2 Problem Formulation
26(1)
3.3 Problem Solution
27(2)
4 Incorporating Wire-Antenna Losses
29(2)
4.1 Modification of the Impedance Matrix
30(1)
5 Connecting A Lumped Element To The Wire Antenna
31(4)
5.1 Modification of the Impedance Matrix
32(3)
6 Pulsed EM Radiation From A Straight Wire Antenna
35(6)
6.1 Problem Description
35(1)
6.2 Source-Type Representations for the TD Radiated EM Fields
36(2)
6.3 Far-Field TD Radiation Characteristics
38(3)
7 EM Reciprocity Based Calculation Of Td Radiation Characteristics
41(6)
7.1 Problem Description
41(1)
7.2 Problem Solution
42(5)
Illustrative Numerical Example
43(4)
8 Influence Of A Wire Scatterer On A Transmitting Wire Antenna
47(6)
8.1 Problem Description
47(1)
8.2 Problem Solution
48(5)
Illustrative Numerical Example
49(4)
9 Influence Of A Lumped Load On EM Scattering Of A Receiving Wire Antenna
53(6)
9.1 Problem Description
53(1)
9.2 Problem Solution
54(5)
Illustrative Numerical Example
55(4)
10 Influence Of A Wire Scatterer On A Receiving Wire Antenna
59(6)
10.1 Problem Description
59(1)
10.2 Problem Solution
59(6)
Illustrative Numerical Example
61(4)
11 EM-Field Coupling To Transmission Lines
65(12)
11.1 Introduction
65(3)
11.2 Problem Description
68(1)
11.3 EM-Field-To-Line Interaction
68(3)
11.4 Relation to Agrawal Coupling Model
71(2)
11.5 Alternative Coupling Models Based on EM Reciprocity
73(4)
11.5.1 EM Plane-Wave Incidence
73(1)
11.5.2 Known EM Source Distribution
74(3)
12 EM Plane-Wave Induced Thevenin's Voltage On Transmission Lines
77(16)
12.1 Transmission Line Above the Perfect Ground
77(6)
12.1.1 Thevenin's Voltage at x = xx
78(3)
12.1.2 Thevenin's Voltage at x = x2
81(2)
12.2 Narrow Trace on a Grounded Slab
83(10)
12.2.1 Thevenin's Voltage at x = xx
85(3)
12.2.2 Thevenin's Voltage atx = x2
88(1)
Illustrative Numerical Example
89(4)
13 Ved-Induced Thevenin's Voltage On Transmission Lines
93(10)
13.1 Transmission Line Above the Perfect Ground
93(5)
13.1.1 Excitation EM Fields
94(3)
13.1.2 Thevenin's Voltage at x = x1
97(1)
13.1.3 Thevenin's Voltage at x = x2
98(1)
13.2 Influence of Finite Ground Conductivity
98(5)
13.2.1 Excitation EM Fields
98(2)
13.2.2 Correction to Thevenin's Voltage at x = x1
100(1)
13.2.3 Correction to Thevenin's Voltage at x = x2
101(1)
Illustrative Numerical Example
101(2)
14 Cagniard-Dehoop Method Of Moments For Planar-Strip Antennas
103(18)
14.1 Problem Description
105(1)
14.2 Problem Formulation
106(1)
14.3 Problem Solution
107(2)
14.4 Antenna Excitation
109(2)
14.4.1 Plane-Wave Excitation
110(1)
14.4.2 Delta-Gap Excitation
111(1)
14.5 Extension to a Wide-Strip Antenna
111(10)
Illustrative Numerical Example
117(4)
15 Incorporating Strip-Antenna Losses
121(4)
15.1 Modification of the Impeditivity Matrix
122(3)
15.1.1 Strip with Conductive Properties
123(1)
15.1.2 Strip with Dielectric Properties
123(1)
15.1.3 Strip with Conductive and Dielectric Properties
124(1)
15.1.4 Strip with Drude-Type Dispersion
124(1)
16 Connecting A Lumped Element To The Strip Antenna
125(4)
16.1 Modification of the Impeditivity Matrix
126(3)
17 Including A Pec Ground Plane
129(8)
17.1 Problem Description
129(1)
17.2 Problem Formulation
130(1)
17.3 Problem Solution
131(1)
17.4 Antenna Excitation
132(5)
Illustrative Numerical Example
133(4)
A A GREEN'S FUNCTION REPRESENTATION IN AN UNBOUNDED, HOMOGENEOUS, AND ISOTROPIC MEDIUM
137(4)
B TIME-DOMAIN RESPONSE OF AN INFINITE CYLINDRICAL ANTENNA
141(6)
B.1 Transform-Domain Solution
141(2)
B.2 Time-Domain Solution
143(4)
C IMPEDANCE MATRIX
147(4)
C.1 Generic Integral IA
147(2)
C.2 Generic Integral IB
149(1)
C.3 TD Impedance Matrix Elements
150(1)
D MUTUAL-IMPEDANCE MATRIX
151(6)
D.1 Generic Integral JA
151(2)
D.2 Generic Integral JB
153(1)
D.3 TD Mutual-Impedance Matrix Elements
154(3)
E INTERNAL IMPEDANCE OF A SOLID WIRE
157(2)
F VED-INDUCED EM COUPLING TO TRANSMISSION LINES --- GENERIC INTEGRALS
159(10)
F.1 Generic Integral I
159(4)
F.2 Generic Integral J
163(2)
F.3 Generic Integral K.
165(4)
G IMPEDITIVITY MATRIX
169(8)
G.1 Generic Integral J
169(8)
G.1.1 Generic Integral JA
171(4)
G.1.2 Generic Integral JB
175(2)
H A RECURSIVE CONVOLUTION METHOD AND ITS IMPLEMENTATION
177(6)
H.1 Convolution-Integral Representation
177(2)
H.2 Illustrative Example
179(1)
H.3 Implementation of the Recursive Convolution Method
180(3)
I CONDUCTANCE AND CAPACITANCE OF A THIN HIGH-CONTRAST LAYER
183(4)
J GROUND-PLANE IMPEDITIVITY MATRIX
187(8)
J.1 Generic Integral J
187(8)
J.1.1 Generic Integral IA
189(4)
J.1.2 Generic Integral IB
193(2)
K IMPLEMENTATION OF CDH-MOM FOR THIN-WIRE ANTENNAS
195(10)
K.1 Setting Space-time Input Parameters
195(2)
K.2 Antenna Excitation
197(3)
K.2.1 Plane-Wave Excitation
197(2)
K.2.2 Delta-Gap Excitation
199(1)
K.3 Impedance Matrix
200(2)
K.4 Marching-on-in-Time Solution Procedure
202(1)
K.5 Calculation of Far-Field TD Radiation Characteristics
203(2)
L IMPLEMENTATION OF VED-INDUCED THEVENIN'S VOLTAGES ON A TRANSMISSION LINE
205(10)
L.1 Setting Space-Time Input Parameters
205(1)
L.2 Setting Excitation Parameters
206(1)
L.3 Calculating Thevenin's Voltages
207(4)
L.4 Incorporating Ground Losses
211(4)
M IMPLEMENTATION OF CDH-MOM FOR NARROW-STRIP ANTENNAS
215(8)
M.1 Setting Space-Time Input Parameters
215(2)
M.2 Delta-Gap Antenna Excitation
217(1)
M.3 Impeditivity Matrix
217
M.4 Marching-on-in-Time Solution Procedure
200(23)
References 223(4)
Index 227
MARTIN STUMPF, PhD, is an Associate Professor of Electromagnetic Theory at Brno University of Technology, Brno, The Czech Republic. His research interests include analytical and numerical modeling of wave and diffusive field phenomena with an emphasis on electromagnetic compatibility and antenna engineering. He is a member of the IEEE and the IEEE Antennas and Propagation and Electromagnetic Compatibility Societies.