|
Part I Tools and Problems |
|
|
|
1 Elements of Functional Analysis and Distributions |
|
|
3 | (16) |
|
|
3 | (2) |
|
1.2 Elements of Functional Analysis |
|
|
5 | (7) |
|
1.2.1 Fixed Point Theorems |
|
|
5 | (1) |
|
1.2.2 The Banach Isomorphism Theorem |
|
|
5 | (1) |
|
1.2.3 The Closed Graph Theorem |
|
|
5 | (1) |
|
1.2.4 The Banach-Steinhaus Theorem |
|
|
6 | (1) |
|
1.2.5 The Banach-Alaoglu Theorem |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.2.7 The Hahn-Banach Theorem |
|
|
7 | (1) |
|
|
7 | (2) |
|
1.2.9 Spectral Theory of Self-Adjoint Compact Operators |
|
|
9 | (1) |
|
1.2.10 LP Spaces, 1 ≤ p ≤ + ∞ |
|
|
9 | (1) |
|
1.2.11 The Holder and Young Inequalities |
|
|
10 | (1) |
|
1.2.12 Approximation of the Identity |
|
|
11 | (1) |
|
1.3 Elements of Distribution Theory |
|
|
12 | (7) |
|
|
12 | (1) |
|
1.3.2 Tempered Distributions |
|
|
13 | (2) |
|
1.3.3 The Fourier Transform |
|
|
15 | (1) |
|
1.3.4 The Stationary Phase Method |
|
|
16 | (3) |
|
2 Statements of the Problems of Chap. 1 |
|
|
19 | (6) |
|
|
25 | (16) |
|
|
25 | (6) |
|
3.1.1 Sobolev Spaces on RJ, d ≥ 1 |
|
|
25 | (3) |
|
3.1.2 Local Sobolev Spaces Hsloc(Rd) |
|
|
28 | (1) |
|
3.1.3 Sobolev Spaces on an Open Subset of Rd |
|
|
29 | (2) |
|
3.1.4 Sobolev Spaces on the Torus |
|
|
31 | (1) |
|
|
31 | (2) |
|
3.2.1 Holder Spaces of Integer Order |
|
|
31 | (1) |
|
3.2.2 Holder Spaces of Fractional Order |
|
|
32 | (1) |
|
3.3 Characterization of Sobolev and Holder Spaces in Dyadic Rings |
|
|
33 | (2) |
|
3.3.1 Characterization of Sobolev Spaces |
|
|
34 | (1) |
|
3.3.2 Characterization of Holder Spaces |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
35 | (2) |
|
3.5 Some Words on Interpolation |
|
|
37 | (2) |
|
3.6 The Hardy-Littlewood-Sobolev Inequality |
|
|
39 | (2) |
|
4 Statements of the Problems of Chap. 3 |
|
|
41 | (20) |
|
|
61 | (14) |
|
|
61 | (1) |
|
5.1.1 Definition and First Properties |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (1) |
|
5.2 Pseudo-Differential Operators |
|
|
62 | (4) |
|
5.2.1 Definition and First Properties |
|
|
62 | (1) |
|
|
63 | (1) |
|
5.2.3 Image of a ψDO by a Diffeomorphism |
|
|
63 | (1) |
|
|
64 | (1) |
|
5.2.5 Action of the ψDO on Sobolev Spaces |
|
|
65 | (1) |
|
5.2.6 Garding Inequalities |
|
|
65 | (1) |
|
5.3 Invertibility of Elliptic Symbols |
|
|
66 | (1) |
|
5.4 Wave Front Set of a Distribution |
|
|
66 | (2) |
|
5.4.1 Definition and First Properties |
|
|
66 | (1) |
|
5.4.2 Wave Front Set and ψDO |
|
|
67 | (1) |
|
5.4.3 The Propagation of Singularities Theorem |
|
|
67 | (1) |
|
5.5 Paradifferential Calculus |
|
|
68 | (3) |
|
|
68 | (1) |
|
5.5.2 Paradifferential Operators |
|
|
69 | (1) |
|
5.5.3 The Symbolic Calculus |
|
|
70 | (1) |
|
5.5.4 Link with the Paraproducts |
|
|
71 | (1) |
|
5.6 Microlocal Defect Measures |
|
|
71 | (4) |
|
6 Statements of the Problems of Chap. 5 |
|
|
75 | (26) |
|
7 The Classical Equations |
|
|
101 | (24) |
|
7.1 Equations with Analytic Coefficients |
|
|
101 | (3) |
|
7.1.1 The Cauchy-Kovalevski Theorem |
|
|
102 | (1) |
|
7.1.2 The Holmgren Uniqueness Theorem |
|
|
103 | (1) |
|
|
104 | (4) |
|
7.2.1 The Mean Value Property |
|
|
104 | (1) |
|
7.2.2 Hypoellipticity: Analytic Hypoellipticity |
|
|
104 | (1) |
|
7.2.3 The Maximum Principles |
|
|
105 | (1) |
|
7.2.4 The Harnack Inequality |
|
|
105 | (1) |
|
7.2.5 The Dirichlet Problem |
|
|
106 | (1) |
|
|
106 | (2) |
|
|
108 | (1) |
|
7.3.1 The Maximum Principle |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
109 | (4) |
|
7.4.1 Homogeneous Cauchy Problem |
|
|
109 | (2) |
|
7.4.2 Inhomogencous Cauchy Problem |
|
|
111 | (1) |
|
|
112 | (1) |
|
7.5 The Schrodinger Equation |
|
|
113 | (3) |
|
|
113 | (1) |
|
7.5.2 Properties of the Solution |
|
|
114 | (2) |
|
|
116 | (1) |
|
|
117 | (5) |
|
7.7.1 The Incompressible Euler Equations |
|
|
117 | (4) |
|
7.7.2 The Compressible Euler Equations |
|
|
121 | (1) |
|
7.8 The Navier-Stokcs Equations |
|
|
122 | (3) |
|
|
122 | (1) |
|
7.8.2 The Leray Theorem (1934) |
|
|
122 | (1) |
|
7.8.3 Strong Solutions: Theorems of Fujita-Kato and Kato |
|
|
123 | (2) |
|
8 Statements of the Problems of Chap. 7 |
|
|
125 | (56) |
|
Part II Solutions of the Problems and Classical Results |
|
|
|
9 Solutions of the Problems |
|
|
181 | (162) |
|
|
343 | (10) |
|
10.1 Some Classical Formulas |
|
|
343 | (1) |
|
10.1.1 The Leibniz Formula |
|
|
343 | (1) |
|
10.1.2 The Taylor Formula with Integral Reminder |
|
|
343 | (1) |
|
10.1.3 The Faa-di-Bruno Formula |
|
|
344 | (1) |
|
10.2 Elements of Integration |
|
|
344 | (4) |
|
10.2.1 Convergence Theorems |
|
|
344 | (1) |
|
10.2.2 Change of Variables in Rd |
|
|
345 | (1) |
|
10.2.3 Polar Coordinates in Rd |
|
|
345 | (1) |
|
10.2.4 The Gauss-Green Formula |
|
|
346 | (1) |
|
10.2.5 Integration on a Graph |
|
|
347 | (1) |
|
10.3 Elements of Differential Calculus |
|
|
348 | (1) |
|
10.4 Elements of Differential Equations |
|
|
348 | (2) |
|
10.4.1 The Precise Cauchy-Lipschitz Theorem |
|
|
348 | (1) |
|
10.4.2 The Cauchy-Arzela-Peano Theorem |
|
|
349 | (1) |
|
|
349 | (1) |
|
10.4.4 The Gronwall Inequality |
|
|
350 | (1) |
|
10.5 Elements of Holomorphic Functions |
|
|
350 | (3) |
References |
|
353 | (2) |
Index |
|
355 | |