|
|
1 | (8) |
|
1.1 Dynamic Social Networks |
|
|
1 | (2) |
|
1.1.1 The Twitter Social Network |
|
|
3 | (1) |
|
1.2 Research and Technical Challenges |
|
|
3 | (1) |
|
1.3 Problem Statement and Objectives |
|
|
4 | (2) |
|
1.4 Scope and Plan of the Book |
|
|
6 | (3) |
|
2 Background and Related Work |
|
|
9 | (12) |
|
|
9 | (1) |
|
2.2 Document-Pivot Methods |
|
|
10 | (1) |
|
2.3 Feature-Pivot Methods |
|
|
10 | (2) |
|
|
12 | (7) |
|
|
12 | (1) |
|
|
12 | (1) |
|
2.4.3 Latent Dirichlet Allocation |
|
|
13 | (1) |
|
2.4.4 Document-Pivot Topic Detection |
|
|
14 | (1) |
|
2.4.5 Graph-Based Feature-Pivot Topic Detection |
|
|
14 | (2) |
|
2.4.6 Frequent Pattern Mining |
|
|
16 | (1) |
|
2.4.7 Soft Frequent Pattern Mining |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
19 | (2) |
|
3 Joint Sequence Complexity: Introduction and Theory |
|
|
21 | (36) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (4) |
|
3.4 Contributions and Results |
|
|
26 | (3) |
|
3.4.1 Models and Notations |
|
|
27 | (1) |
|
3.4.2 Summary of Contributions and Results |
|
|
27 | (2) |
|
3.5 Proofs of Contributions and Results |
|
|
29 | (7) |
|
3.5.1 An Important Asymptotic Equivalence |
|
|
29 | (2) |
|
3.5.2 Functional Equations |
|
|
31 | (1) |
|
3.5.3 Double DePoissonization |
|
|
32 | (1) |
|
3.5.4 Same Markov Sources |
|
|
32 | (1) |
|
3.5.5 Different Markov Sources |
|
|
33 | (3) |
|
3.6 Expending Asymptotics and Periodic Terms |
|
|
36 | (1) |
|
3.7 Numerical Experiments in Twitter |
|
|
37 | (2) |
|
|
39 | (2) |
|
3.8.1 Examples of Suffix Trees |
|
|
41 | (1) |
|
|
41 | (7) |
|
3.9.1 Topic Detection Method |
|
|
44 | (2) |
|
|
46 | (1) |
|
3.9.3 Keywords Extraction |
|
|
47 | (1) |
|
|
47 | (1) |
|
3.9.5 Evaluation of Topic Detection |
|
|
48 | (1) |
|
3.10 Tweet Classification |
|
|
48 | (5) |
|
3.10.1 Tweet Augmentation |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
49 | (2) |
|
3.10.4 Experimental Results on Tweet Classification |
|
|
51 | (2) |
|
|
53 | (4) |
|
4 Text Classification via Compressive Sensing |
|
|
57 | (12) |
|
|
57 | (1) |
|
4.2 Compressive Sensing Theory |
|
|
58 | (1) |
|
4.3 Compressive Sensing Classification |
|
|
59 | (3) |
|
|
59 | (1) |
|
|
60 | (2) |
|
4.4 Tracking via Kalman Filter |
|
|
62 | (2) |
|
|
64 | (3) |
|
4.5.1 Classification Performance Based on Ground Truth |
|
|
65 | (2) |
|
|
67 | (2) |
|
5 Extension of Joint Complexity and Compressive Sensing |
|
|
69 | (24) |
|
|
69 | (1) |
|
5.2 Classification Encryption via Compressed Permuted Measurement Matrices |
|
|
70 | (6) |
|
5.2.1 Preprocessing Phase |
|
|
71 | (1) |
|
|
71 | (1) |
|
5.2.3 Security System Architecture |
|
|
72 | (1) |
|
5.2.4 Possible Attacks from Malicious Users |
|
|
73 | (1) |
|
5.2.5 Experimental Results |
|
|
74 | (2) |
|
5.3 Dynamic Classification Completeness |
|
|
76 | (5) |
|
|
77 | (1) |
|
|
78 | (1) |
|
5.3.3 Experimental Results |
|
|
79 | (2) |
|
5.4 Stealth Encryption Based on Eulerian Circuits |
|
|
81 | (10) |
|
|
83 | (1) |
|
5.4.2 Motivation and Algorithm Description |
|
|
83 | (3) |
|
5.4.3 Performance in Markov Models |
|
|
86 | (5) |
|
5.4.4 Experimental Results |
|
|
91 | (1) |
|
|
91 | (2) |
|
6 Conclusions and Perspectives |
|
|
93 | (2) |
|
|
95 | (2) |
|
A.1 Suffix Tree Construction |
|
|
95 | (1) |
|
A.2 Suffix Trees Superposition |
|
|
96 | (1) |
References |
|
97 | (6) |
Index |
|
103 | |