Muutke küpsiste eelistusi

E-raamat: Topics in Hyperplane Arrangements

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 210,83 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph studies the interplay between various algebraic, geometric and combinatorial aspects of real hyperplane arrangements. It provides a careful, organized and unified treatment of several recent developments in the field, and brings forth many new ideas and results. It has two parts, each divided into eight chapters, and five appendices with background material. Part I gives a detailed discussion on faces, flats, chambers, cones, gallery intervals, lunes and other geometric notions associated with arrangements. The Tits monoid plays a central role. Another important object is the category of lunes which generalizes the classical associative operad. Also discussed are the descent and lune identities, distance functions on chambers, and the combinatorics of the braid arrangement and related examples. Part II studies the structure and representation theory of the Tits algebra of an arrangement. It gives a detailed analysis of idempotents and Peirce decompositions, and connects them to the classical theory of Eulerian idempotents. It introduces the space of Lie elements of an arrangement which generalizes the classical Lie operad. This space is the last nonzero power of the radical of the Tits algebra. It is also the socle of the left ideal of chambers and of the right ideal of Zie elements. Zie elements generalize the classical Lie idempotents. They include Dynkin elements associated to generic half-spaces which generalize the classical Dynkin idempotent. Another important object is the lune-incidence algebra which marks the beginning of noncommutative Mobius theory. These ideas are also brought upon the study of the Solomon descent algebra. The monograph is written with clarity and in sufficient detail to make it accessible to graduate students. It can also serve as a useful reference to experts.
Preface xi
Introduction xv
Part I
1(238)
Chapter 1 Hyperplane arrangements
3(44)
1.1 Faces
4(4)
1.2 Arrangements of small rank
8(1)
1.3 Flats
9(1)
1.4 Tits monoid and Birkhoff monoid
10(6)
1.5 Bi-faces and Janus monoid
16(2)
1.6 Order-theoretic properties of faces and flats
18(2)
1.7 Arrangements under and over a flat
20(3)
1.8 Cartesian product of arrangements
23(5)
1.9 Generic hyperplanes and adjoints of arrangements
28(1)
1.10 Separating hyperplanes, minimal galleries and gate property
29(6)
1.11 Combinatorially isomorphic arrangements
35(1)
1.12 Partial order on pairs of faces
36(3)
1.13 Characteristic polynomial and Zaslavsky formula
39(8)
Notes
44(3)
Chapter 2 Cones
47(28)
2.1 Cones and convexity
47(5)
2.2 Case and base maps
52(2)
2.3 Topology of a cone
54(2)
2.4 Cutting and separating hyperplanes and gated sets
56(2)
2.5 Gallery intervals
58(3)
2.6 Charts and dicharts
61(3)
2.7 Poset of top-cones
64(4)
2.8 Partial-flats
68(7)
Notes
74(1)
Chapter 3 Lunes
75(26)
3.1 Lunes
75(2)
3.2 Nested faces and lunes
77(6)
3.3 Decomposition of a cone into lunes
83(5)
3.4 Restriction and extension of cones
88(4)
3.5 Top-star-lunes
92(1)
3.6 Conjugate top-cones
93(3)
3.7 Cartesian product of cones, gallery intervals and lunes
96(5)
Notes
99(2)
Chapter 4 Category of lunes
101(18)
4.1 Poset of top-lunes
101(3)
4.2 Two partial orders on lunes
104(3)
4.3 Maps involving lunes
107(1)
4.4 Category of lunes
108(3)
4.5 Categories associated to faces and flats
111(1)
4.6 Presentation of categories
112(1)
4.7 Action of the Birkhoff monoid on lunes
113(3)
4.8 Substitution product of chambers
116(3)
Notes
118(1)
Chapter 5 Reflection arrangements
119(16)
5.1 Coxeter groups and reflection arrangements
119(2)
5.2 Face-types, flat-types and lune-types
121(3)
5.3 Length, W-valued distance and weak order
124(1)
5.4 Subgroups of Coxeter groups
125(2)
5.5 Cycle-type function and characteristic polynomial
127(2)
5.6 Coxeter-Tits monoid
129(3)
5.7 Good reflection arrangements
132(3)
Notes
134(1)
Chapter 6 Braid arrangement and related examples
135(42)
6.1 Coordinate arrangement
135(4)
6.2 Rank-two arrangements
139(1)
6.3 Braid arrangement. Compositions and partitions
140(8)
6.4 Braid arrangement. Partial orders and graphs
148(4)
6.5 Braid arrangement. Linear compositions, partitions and shuffles
152(4)
6.6 Enumeration in the braid arrangement
156(5)
6.7 Arrangement of type B
161(8)
6.8 Arrangement of type D
169(1)
6.9 Graphic arrangements
170(7)
Notes
173(4)
Chapter 7 Descent and lune equations
177(34)
7.1 Descent equation
177(6)
7.2 Lune equation
183(2)
7.3 Witt identities
185(4)
7.4 Descent-lune equation for flats
189(1)
7.5 Descent and lune equations for partial-flats
189(2)
7.6 Faces and flats for left Σ-sets
191(2)
7.7 Descent equation for left Σ-sets
193(6)
7.8 Lune equation for left Σ-sets
199(2)
7.9 Lune equation for right Σ-sets
201(5)
7.10 Descent-lune equation for II-sets
206(1)
7.11 Flat-based lattices
207(4)
Notes
209(2)
Chapter 8 Distance functions and Varchenko matrix
211(28)
8.1 Weights on half-spaces
211(5)
8.2 Sampling weights from a matrix
216(2)
8.3 Distance functions
218(2)
8.4 Varchenko matrix
220(7)
8.5 Symmetric Varchenko matrix
227(5)
8.6 Braid arrangement
232(5)
8.7 Type B arrangement
237(2)
Notes
238(1)
Part II
239(272)
Chapter 9 Birkhoff algebra and Tits algebra
241(34)
9.1 Birkhoff algebra
242(4)
9.2 Algebras of charts, dicharts and cones
246(3)
9.3 Tits algebra
249(3)
9.4 Left module of chambers
252(3)
9.5 Modules over the Tits algebra
255(6)
9.6 Filtration by flats of a right module
261(2)
9.7 Primitive part and decomposable part
263(1)
9.8 Over and under a flat. Cartesian product
264(2)
9.9 Janus algebra and its one-parameter deformation
266(6)
9.10 Coxeter-Tits algebra
272(3)
Notes
273(2)
Chapter 10 Lie and Zie elements
275(24)
10.1 Lie elements
275(5)
10.2 Lie in small ranks. Antisymmetry and Jacobi identity
280(1)
10.3 Zie elements
281(7)
10.4 Zie elements and primitive part of modules
288(1)
10.5 Zie in small ranks
289(1)
10.6 Substitution product of Lie
290(9)
Notes
296(3)
Chapter 11 Eulerian idempotents
299(34)
11.1 Homogeneous sections of the support map
299(5)
11.2 Eulerian idempotents
304(5)
11.3 Eulerian families, complete systems and algebra sections
309(2)
11.4 Q-bases of the Tits algebra
311(4)
11.5 Families of Zie idempotents
315(5)
11.6 Eulerian idempotents for good reflection arrangements
320(2)
11.7 Extension problem and dimension of Lie
322(4)
11.8 Rank-two arrangements
326(1)
11.9 Rank-three arrangements
327(6)
Notes
331(2)
Chapter 12 Diagonalizability and characteristic elements
333(34)
12.1 Stationary distribution
333(6)
12.2 Diagonalizability and eigensections
339(5)
12.3 Takeuchi element
344(5)
12.4 Characteristic elements
349(7)
12.5 Type A Eulerian idempotents and Adams elements
356(4)
12.6 Type B Eulerian idempotents and Adams elements
360(7)
Notes
363(4)
Chapter 13 Loewy series and Peirce decompositions
367(30)
13.1 Primitive series and decomposable series
368(2)
13.2 Primitive series and socle series
370(2)
13.3 Radical series and primitive series
372(1)
13.4 Peirce decompositions, and primitive and decomposable series
373(2)
13.5 Left Peirce decomposition of chambers. Lie over flats
375(3)
13.6 Right Peirce decomposition of Zie. Lie under flats
378(4)
13.7 Two-sided Peirce decomposition of faces. Lie over & under flats
382(5)
13.8 Generation of Lie elements in rank one
387(1)
13.9 Rigidity of the left module of chambers
388(2)
13.10 Quiver of the Tits algebra
390(1)
13.11 Applications of Peirce decompositions to Loewy series
391(6)
Notes
394(3)
Chapter 14 Dynkin idempotents
397(50)
14.1 Dynkin elements
397(3)
14.2 Dynkin basis for the space of Lie elements
400(3)
14.3 Applications to affine hyperplane arrangements
403(3)
14.4 Orientation space
406(2)
14.5 Joyal-Klyachko-Stanley. Presentation of Lie
408(9)
14.6 Bjorner and Lyndon bases
417(3)
14.7 Coordinate arrangement
420(1)
14.8 Rank-two arrangements
421(3)
14.9 Classical (type A) Lie elements
424(11)
14.10 Type B Lie elements
435(12)
Notes
444(3)
Chapter 15 Incidence algebras
447(32)
15.1 Flat-incidence algebra
447(2)
15.2 Lune-incidence algebra
449(5)
15.3 Noncommutative zeta and Mobius functions
454(6)
15.4 Noncommutative Mobius inversion. Group-likes and primitives
460(2)
15.5 Characterizations of Eulerian families
462(3)
15.6 Lie-incidence algebra
465(5)
15.7 Additive and Weisner functions on lunes
470(5)
15.8 Subalgebras of the lune-incidence algebra
475(1)
15.9 Commutative, associative and Lie operads
476(3)
Notes
478(1)
Chapter 16 Invariant Birkhoff algebra and invariant Tits algebra
479(32)
16.1 Invariant Birkhoff algebra
480(1)
16.2 Invariant Tits algebra
480(1)
16.3 Solomon descent algebra
481(2)
16.4 Enumeration of face-types
483(3)
16.5 Structure constants of the invariant Tits algebra
486(4)
16.6 Invariant Lie and Zie elements
490(1)
16.7 Invariant lune-incidence algebra
491(3)
16.8 Invariant Eulerian idempotents
494(4)
16.9 Peirce decompositions
498(3)
16.10 Bilinear forms
501(2)
16.11 Garsia-Reutenauer idempotents (Type A)
503(4)
16.12 Bergeron idempotents (Type B)
507(4)
Notes
508(3)
Appendices
511(66)
Appendix A Regular cell complexes
513(4)
A.1 Cell complexes
513(3)
A.2 Minimal galleries and gate property
516(1)
Notes
516(1)
Appendix B Posets
517(8)
B.1 Poset terminology
517(1)
B.2 Graded posets
518(1)
B.3 Semimodularity and join-distributivity
518(2)
B.4 Strongly connected posets
520(1)
B.5 Adjunctions between posets
521(3)
Notes
524(1)
Appendix C Incidence algebras of posets
525(20)
C.1 Incidence algebras and Mobius functions
525(6)
C.2 Radical of an incidence algebra
531(1)
C.3 Reduced incidence algebras
532(3)
C.4 Poset cocycles and deformations of incidence algebras
535(9)
Notes
544(1)
Appendix D Algebras and modules
545(26)
D.1 Modules
545(2)
D.2 Idempotents and nilpotents
547(1)
D.3 Split-semisimple commutative algebras
548(2)
D.4 Diagonalizability and Jordan-Chevalley decomposition
550(3)
D.5 Radical, socle and semisimplicity
553(2)
D.6 Invertible elements and zero divisors
555(1)
D.7 Lifting idempotents
556(2)
D.8 Elementary algebras
558(5)
D.9 Algebra of a finite lattice
563(7)
Notes
570(1)
Appendix E Bands
571(6)
E.1 Bands
571(2)
E.2 Distance functions
573(3)
Notes
576(1)
References 577(2)
Bibliography 579(18)
Notation Index 597(8)
Subject Index 605
Marcelo Aguiar, Cornell Univeristy, Ithaca, NY.

Swapneel Mahajan, Indian Institute of Technology(IIT), Mumbai, India.