Muutke küpsiste eelistusi

E-raamat: Topics in Nonconvex Optimization: Theory and Applications

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 98,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Nonconvex Optimization is a multi-disciplinary research field that deals with the characterization and computation of local/global minima/maxima of nonlinear, nonconvex, nonsmooth, discrete and continuous functions. Nonconvex optimization problems are frequently encountered in modeling real world systems for a very broad range of applications including engineering, mathematical economics, management science, financial engineering, and social science.

This contributed volume consists of selected contributions from the Advanced Training Programme on Nonconvex Optimization and Its Applications held at Banaras Hindu University in March 2009. It aims to bring together new concepts, theoretical developments, and applications from these researchers. Both theoretical and applied articles are contained in this volume which adds to the state of the art research in this field.

Topics in Nonconvex Optimization is suitable for advanced graduate students and researchers in this area.



This contributed volume consists of papers in the area of nonconvex optimization from researchers practicing in India. It aims to bring together new concepts, theoretical developments, and applications from these researchers.

 Some Equivalences among Nonlinear Complementarity Problems,
Least-Element Problems and Variational Inequality Problems in Ordered Spaces.
Qamrul Hasan Ansari and Jen-Chih Yao.- Generalized Monotone Maps and
Complementarity Problems. S. K. Neogy and A. K. Das.- Optimality Conditions
Without Continuity in Multivalued Optimization using Approximations as
Generalized Derivatives. Phan Quoc Khanh and Nguyen Dinh Tuan.- Variational
Inequality and Complementarity Problem. Sudarsan Nanda.- A Derivative for
Semi-preinvex Functions and its Applications in Semi-preinvex Programming.
Y.X. Zhao, S.Y. Wang, L.Coladas Uria, S.K. Mishra.- Proximal Proper Saddle
Points in Set-Valued Optimization. C. S. Lalitha and R. Arora.- Metric
Regularity and Optimality Conditions in Nonsmooth Optimization. Anulekha
Dhara and Aparna Mehra.- An Application of the Modified Subgradient Method
for Solving Fuzzy Linear Fractional Programming Problem. Pankaj Gupta and
Mukesh Kumar Mehlawat.- On Sufficient Optimality Conditions for Semi-infinite
Discrete Minmax Fractional Programming Problems under Generalized V-Invexity.
S. K. Mishra, Kin Keung Lai, Sy-Ming Guu and Kalpana Shukla.- Ekeland type
Variational Principles and Equilibrium Problems. Qamrul Hasan Ansari and
Lai-Jiu Lin.- Decomposition Methods Based on Augmented Lagrangians: A Survey.
Abdelouahed Hamdi and Shashi K. Mishra.- Second Order Symmetric Duality with
Generalized Invexity. S.K. Padhan and C. Nahak.- A Dynamic Solution Concept
to Cooperative Games with Fuzzy Coalitions. Surajit Borkotokey.-
Characterizations of the Solution Sets and Sufficient Optimality Criteria via
Higher Order Strong Convexity. Pooja Arora, Guneet Bhatia and Anjana Gupta.-
Variational Inequalities and Optimistic Bilevel Programming Problem Via
Convexifactors.Bhawna Kohli.- On Efficiency in Nondifferentiable
Multiobjective Optimization Involving Pseudo D-Univex Functions; Duality. J.
S. Rautela and Vinay Singh.- Index.