Muutke küpsiste eelistusi

E-raamat: Topics and Solved Exercises at the Boundary of Classical and Modern Physics

  • Formaat - PDF+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a simple and well-structured course followed by an innovative collection of exercises and solutions that will enrich a wide range of courses as part of the undergraduate physics curriculum. It will also be useful for first-year graduate students who are preparing for their qualifying exams. The book is divided into four main themes at the boundary of classical and modern physics: atomic physics, matter-radiation interaction, blackbody radiation, and thermodynamics. Each chapter starts with a thorough and well-illustrated review of the core material, followed by plenty of original exercises that progress in difficulty, replete with clear, step-by-step solutions. This book will be invaluable for undergraduate course instructors who are looking for a source of original exercises to enhance their classes, while students that want to hone their skills will encounter challenging and stimulating problems.
1 Atoms
1(132)
1.1 Introduction
1(1)
1.2 Atom Structure
2(3)
1.2.1 Electron
2(1)
1.2.2 Nucleus
2(1)
1.2.3 Notation of Nuclides
3(1)
1.2.4 Mass Units
4(1)
1.3 Atomic Models
5(11)
1.3.1 Dalton's Model
5(1)
1.3.2 Thomson's Model
6(1)
1.3.3 Rutherford's Model
7(1)
1.3.4 Bohr's Model
8(5)
1.3.5 The Sommerfeld-Wilson Model
13(1)
1.3.6 De Broglie's Model
14(1)
1.3.7 Schrodinger's Model
15(1)
1.4 Energy Levels of the Atom of Hydrogen
16(10)
1.4.1 Series of Lines of Lyman
17(1)
1.4.2 Series of Lines of Balmer
17(1)
1.4.3 Series of Lines of Paschen
17(1)
1.4.4 Energy Diagram
18(1)
1.4.5 Quantum Numbers
19(1)
1.4.6 Electronic Configuration of an Atom
20(5)
1.4.7 De-Excitation of the Atom
25(1)
1.5 Energy Levels of the Nucleus
26(6)
1.5.1 Binding Energy
27(1)
1.5.2 Binding Energy per Nucleon and Aston's Curve
28(1)
1.5.3 Nuclear Fission
29(2)
1.5.4 Thermonuclear Fusion
31(1)
1.5.5 De-Excitation of the Nucleus
31(1)
1.6 Radioactivity
32(9)
1.6.1 Definition
32(1)
1.6.2 Nuclear Reactions
33(1)
1.6.3 Main Radioactive Emissions
33(2)
1.6.4 Universal Law of Radioactive Decay
35(1)
1.6.5 Half-Life
35(1)
1.6.6 Activity of a Radioactive Source
36(1)
1.6.7 Mean-Life
36(1)
1.6.8 Measurement of Radioactivity
37(1)
1.6.9 Dangers of Radioactivity
38(1)
1.6.10 Radioprotection Rules
38(1)
1.6.11 Radioactivity Harms
38(2)
1.6.12 Radioactivity Benefits
40(1)
1.7 Solved Exercises
41(92)
1.7.1 Structure of the Atom
41(17)
1.7.2 Atomic Models
58(45)
1.7.3 Binding Energy
103(16)
1.7.4 Radioactivity
119(14)
2 Matter-Radiation Interaction
133(98)
2.1 Multiple Interaction Phenomena
133(2)
2.1.1 Rayleigh's Scattering
133(1)
2.1.2 Photoelectric Effect (>0.5 MeV)
133(1)
2.1.3 Compton's Scattering (Between 0.5 and 3 MeV)
134(1)
2.1.4 Creation of Electron-Positron Pairs (Between 1 and 10 MeV)
134(1)
2.1.5 Nuclear Photo-Production (< 10 MeV)
135(1)
2.2 Electromagnetic Waves
135(3)
2.2.1 Introduction
135(1)
2.2.2 Wave Definition
135(1)
2.2.3 Electromagnetic Wave
136(1)
2.2.4 Intensity of an Electromagnetic Wave
137(1)
2.3 Photoelectric Effect
138(8)
2.3.1 Introduction
138(1)
2.3.2 Highlighting
139(1)
2.3.3 Definition
139(1)
2.3.4 Observations
140(1)
2.3.5 Interpretation
141(1)
2.3.6 Electronic Shells Concerned with the Photoelectric Effect
142(1)
2.3.7 Wave-Particle Duality
143(2)
2.3.8 Applications
145(1)
2.4 Compton's Scattering
146(13)
2.4.1 Photon Scattering on a Target Electron
146(4)
2.4.2 Relationships Between Energies and Deviation Angles
150(8)
2.4.3 Electronic Shells Involved in the Compton Scattering
158(1)
2.4.4 Inverse Compton's Scattering
158(1)
2.5 Solved Exercises
159(72)
2.5.1 Photoelectric Effect
159(35)
2.5.2 Compton's Scattering
194(37)
3 Black Body
231(54)
3.1 Introduction
231(1)
3.2 Reminders
232(5)
3.2.1 Photometric Quantities
232(1)
3.2.2 Solid Angle
233(2)
3.2.3 Radiated Flux
235(1)
3.2.4 Energy Intensity
235(1)
3.2.5 Emittance
236(1)
3.2.6 Luminance
236(1)
3.2.7 Illuminance
237(1)
3.3 Lambert's Law
237(2)
3.4 Black Body
239(1)
3.5 Planck's Law
239(3)
3.5.1 Laws Derived from the Planck Law
240(2)
3.6 Wien's Laws
242(4)
3.6.1 Wien's First Law
242(3)
3.6.2 Wien's Second Law
245(1)
3.7 The Stefan-Boltzmann Law
246(2)
3.7.1 Demonstration
247(1)
3.8 Useful Interval of Radiation
248(1)
3.9 Ultraviolet Catastrophe
249(1)
3.10 Real Body
250(3)
3.10.1 Introduction
250(1)
3.10.2 Definition of Different Emissivities
250(1)
3.10.3 Gray Body
250(1)
3.10.4 Usual Real Body Emissivities
251(1)
3.10.5 Absorption of Real Bodies
251(2)
3.10.6 Kirchhoff's Law
253(1)
3.11 Radiative Exchanges
253(6)
3.11.1 Radiative Exchanges Between Black Surfaces
253(2)
3.11.2 Concept of the Net Flux
255(2)
3.11.3 Radiative Exchanges Between Gray Opaque Surfaces
257(2)
3.12 Solved Exercises
259(26)
4 Thermodynamics
285(142)
4.1 Introduction
285(1)
4.1.1 Macroscopic Thermodynamics
285(1)
4.1.2 Statistical Thermodynamics
286(1)
4.2 Fundamental Notions
286(11)
4.2.1 State of a System
286(4)
4.2.2 Evolution of a System
290(7)
4.3 First Principle of Thermodynamics
297(6)
4.3.1 Introduction
297(1)
4.3.2 Internal Energy
297(1)
4.3.3 Heat
298(2)
4.3.4 Work
300(2)
4.3.5 Foundations of the First Principle
302(1)
4.4 Enthalpy
303(1)
4.5 Heat Capacities
303(1)
4.6 Second Principle of Thermodynamics
304(11)
4.6.1 Introduction
304(1)
4.6.2 Statements of the Second Principle
304(3)
4.6.3 Entropy
307(3)
4.6.4 The Gibbs Paradox
310(5)
4.7 Heat Machines
315(12)
4.7.1 Introduction
315(1)
4.7.2 Thermodynamic or Driving Machines
315(1)
4.7.3 Dynamo-Thermal or Receiving Machines
316(1)
4.7.4 Carnot's Cycle
316(2)
4.7.5 Yield of a Thermal Machine
318(1)
4.7.6 Cycle of Beau de Rochas or Cycle of Otto
319(3)
4.7.7 Diesel's Cycle
322(2)
4.7.8 Rankine's Cycle
324(1)
4.7.9 Stirling's Cycle
325(1)
4.7.10 Brayton's Cycle
326(1)
4.8 Properties of Pure Bodies
327(9)
4.8.1 Introduction
327(1)
4.8.2 Notion of Phase
327(1)
4.8.3 Diagram (P,T)
328(1)
4.8.4 Saturation Vapor Pressure
329(1)
4.8.5 Clapeyron's Diagram
330(1)
4.8.6 Theorem of Moments
331(1)
4.8.7 Variations of State Functions During a Transition
332(3)
4.8.8 Supercooling and Overheating
335(1)
4.9 Solved Exercises
336(91)
4.9.1 Fundamental Notions
336(19)
4.9.2 First Principle of Thermodynamics
355(28)
4.9.3 Second Principle of Thermodynamics and Heat Machines
383(28)
4.9.4 Properties of Pure Bodies
411(16)
Appendix A The Michelson and Morley Experiment 427(6)
Appendix B Useful Mathematical Reminders in Physics 433(24)
Bibliography 457(2)
Index 459
Samir Khene is Professor and Research Director in the Physics Department of Badji Mokhtar University of Annaba (Algeria). He belongs to the Radiation Physics Laboratory, where he directs the Oxides team. Author of six scientific books published in four countries (Algeria, France, Canada and USA) and several international publications, he has carried out research for thirty years on magnetism and superconductivity. He has directed several theses and research projects in this area.