Muutke küpsiste eelistusi

E-raamat: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization

  • Formaat: PDF+DRM
  • Sari: Applied Optimization 40
  • Ilmumisaeg: 06-Dec-2012
  • Kirjastus: Springer
  • Keel: eng
  • ISBN-13: 9789401140669
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Applied Optimization 40
  • Ilmumisaeg: 06-Dec-2012
  • Kirjastus: Springer
  • Keel: eng
  • ISBN-13: 9789401140669

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The aim of this work is to present in a unified approach a series of results concerning totally convex functions on Banach spaces and their applications to building iterative algorithms for computing common fixed points of mea­ surable families of operators and optimization methods in infinite dimen­ sional settings. The notion of totally convex function was first studied by Butnariu, Censor and Reich [ 31] in the context of the space lRR because of its usefulness for establishing convergence of a Bregman projection method for finding common points of infinite families of closed convex sets. In this finite dimensional environment total convexity hardly differs from strict convexity. In fact, a function with closed domain in a finite dimensional Banach space is totally convex if and only if it is strictly convex. The relevancy of total convexity as a strengthened form of strict convexity becomes apparent when the Banach space on which the function is defined is infinite dimensional. In this case, total convexity is a property stronger than strict convexity but weaker than locally uniform convexity (see Section 1.3 below). The study of totally convex functions in infinite dimensional Banach spaces was started in [ 33] where it was shown that they are useful tools for extrapolating properties commonly known to belong to operators satisfying demanding contractivity requirements to classes of operators which are not even mildly nonexpansive.

Muu info

Springer Book Archives
1: Totally Convex Functions.- 1.1. Convex Functions and Bregman
Distances.- 1.2. The Modulus of Total Convexity.- 1.3. Total Versus Locally
Uniform Convexity.- 1.4. Particular Totally Convex Functions.- 2: Computation
of Fixed Points.- 2.1. Totally Nonexpansive Operators.- 2.2. Totally
Nonexpansive Families of Operators.- 2.3. Stochastic Convex Feasibility
Problems.- 2.4. Applications in Particular Banach Spaces.- 3: Infinite
Dimensional Optimization.- 3.1. A Proximal Point Method.- 3.2. Convergence of
the Proximal Point Method.- 3.3. The Basics of a Duality Theory.- 3.4. An
Augmented Lagrangian Method.- 3.5. Unconstrained Convex Minimization.