Muutke küpsiste eelistusi

E-raamat: Tour of Representation Theory

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 124,64 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Representation theory investigates the different ways in which a given algebraic object--such as a group or a Lie algebra--can act on a vector space. Besides being a subject of great intrinsic beauty, the theory enjoys the additional benefit of having applications in myriad contexts outside pure mathematics, including quantum field theory and the study of molecules in chemistry.

Adopting a panoramic viewpoint, this book offers an introduction to four different flavors of representation theory: representations of algebras, groups, Lie algebras, and Hopf algebras. A separate part of the book is devoted to each of these areas and they are all treated in sufficient depth to enable and hopefully entice the reader to pursue research in representation theory. The book is intended as a textbook for a course on representation theory, which could immediately follow the standard graduate abstract algebra course, and for subsequent more advanced reading courses. Therefore, more than 350 exercises at various levels of difficulty are included. The broad range of topics covered will also make the text a valuable reference for researchers in algebra and related areas and a source for graduate and postgraduate students wishing to learn more about representation theory by self-study.
Preface xi
Conventions xvii
Part I Algebras
Chapter 1 Representations of Algebras
3(76)
1.1 Algebras
3(21)
1.2 Representations
24(17)
1.3 Primitive Ideals
41(9)
1.4 Semisimplicity
50(15)
1.5 Characters
65(14)
Chapter 2 Further Topics on Algebras
79(34)
2.1 Projectives
79(17)
2.2 Frobenius and Symmetric Algebras
96(17)
Part II Groups
Chapter 3 Groups and Group Algebras
113(74)
3.1 Generalities
113(11)
3.2 First Examples
124(7)
3.3 More Structure
131(12)
3.4 Semisimple Group Algebras
143(7)
3.5 Further Examples
150(9)
3.6 Some Classical Theorems
159(11)
3.7 Characters, Symmetric Polynomials, and Invariant Theory
170(9)
3.8 Decomposing Tensor Powers
179(8)
Chapter 4 Symmetric Groups
187(58)
4.1 Gelfand-Zetlin Algebras
189(3)
4.2 The Branching Graph
192(5)
4.3 The Young Graph
197(8)
4.4 Proof of the Graph Isomorphism Theorem
205(12)
4.5 The Irreducible Representations
217(5)
4.6 The Murnaghan-Nakayama Rule
222(13)
4.7 Schur-Weyl Duality
235(10)
Part III Lie Algebras
Chapter 5 Lie Algebras and Enveloping Algebras
245(70)
5.1 Lie Algebra Basics
246(7)
5.2 Types of Lie Algebras
253(4)
5.3 Three Theorems about Linear Lie Algebras
257(9)
5.4 Enveloping Algebras
266(12)
5.5 Generalities on Representations of Lie Algebras
278(9)
5.6 The Nullstellensatz for Enveloping Algebras
287(13)
5.7 Representations of sl2
300(15)
Chapter 6 Semisimple Lie Algebras
315(26)
6.1 Characterizations of Semisimplicity
316(4)
6.2 Complete Reducibility
320(5)
6.3 Cartan Subalgebras and the Root Space Decomposition
325(9)
6.4 The Classical Lie Algebras
334(7)
Chapter 7 Root Systems
341(32)
7.1 Abstract Root Systems
342(7)
7.2 Bases of a Root System
349(7)
7.3 Classification
356(5)
7.4 Lattices Associated to a Root System
361(12)
Chapter 8 Representations of Semisimple Lie Algebras
373(54)
8.1 Reminders
374(3)
8.2 Finite-Dimensional Representations
377(2)
8.3 Highest Weight Representations
379(6)
8.4 Finite-Dimensional Irreducible Representations
385(5)
8.5 The Representation Ring
390(3)
8.6 The Center of the Enveloping Algebra
393(15)
8.7 Weyl's Character Formula
408(10)
8.8 Schur Functors and Representations of sI(V)
418(9)
Part IV Hopf Algebras
Chapter 9 Coalgebras, Bialgebras, and Hopf Algebras
427(38)
9.1 Coalgebras
427(14)
9.2 Comodules
441(6)
9.3 Bialgebras and Hopf Algebras
447(18)
Chapter 10 Representations and Actions
465(38)
10.1 Representations of Hopf Algebras
466(10)
10.2 First Applications
476(9)
10.3 The Representation Ring of a Hopf Algebra
485(7)
10.4 Actions and Coactions of Hopf Algebras on Algebras
492(11)
Chapter 11 Affine Algebraic Groups
503(38)
11.1 Affine Group Schemes
503(5)
11.2 Affine Algebraic Groups
508(4)
11.3 Representations and Actions
512(3)
11.4 Linearity
515(5)
11.5 Irreducibility and Connectedness
520(6)
11.6 The Lie Algebra of an Affine Algebraic Group
526(4)
11.7 Algebraic Group Actions on Prime Spectra
530(11)
Chapter 12 Finite-Dimensional Hopf Algebras
541(34)
12.1 Frobenius Structure
541(8)
12.2 The Antipode
549(3)
12.3 Semisimplicity
552(7)
12.4 Divisibility Theorems
559(8)
12.5 Frobenius-Schur Indicators
567(8)
Appendices
Appendix A The Language of Categories and Functors
575(12)
A.1 Categories
575(3)
A.2 Functors
578(1)
A.3 Naturality
579(4)
A.4 Adjointness
583(4)
Appendix B Background from Linear Algebra
587(12)
B.1 Tensor Products
587(6)
B.2 Horn-⊗ Relations
593(1)
B.3 Vector Spaces
594(5)
Appendix C Some Commutative Algebra
599(6)
C.1 The Nullstellensatz
599(2)
C.2 The Generic Flatness Lemma
601(1)
C.3 The Zariski Topology on a Vector Space
602(3)
Appendix D The Diamond Lemma
605(10)
D.1 The Goal
605(1)
D.2 The Method
606(2)
D.3 First Applications
608(3)
D.4 A Simplification
611(1)
D.5 The Poincare-Birkhoff-Witt Theorem
612(3)
Appendix E The Symmetric Ring of Quotients
615(8)
E.1 Definition and Basic Properties
615(2)
E.2 The Extended Center
617(2)
E.3 Comparison with Other Rings of Quotients
619(4)
Bibliography 623(10)
Subject Index 633(12)
Index of Names 645(4)
Notation 649
Martin Lorenz, Temple University, Philadelphia, PA.