Muutke küpsiste eelistusi

E-raamat: TP-Model Transformation-Based-Control Design Frameworks

  • Formaat: PDF+DRM
  • Ilmumisaeg: 28-Apr-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319196053
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 28-Apr-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319196053

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book covers new aspects and frameworks of control, design, and optimization based on the TP model transformation and its various extensions. The authors outline the three main steps of polytopic and LMI based control design: 1) development of the qLPV state-space model, 2) generation of the polytopic model 3) application of LMI to derive controller and observer. They go on to describe why literature has extensively studied LMI design, but has not focused much on the second step, in part because the generation and manipulation of the polytopic form was not tractable in many cases. They then show how the TP model transformation facilitates this second step and hence reveals new directions, leading to powerful design procedures and the formulation of new questions. The chapters of this book, and the complex dynamical control tasks which they cover, are organized so as to present and analyze the beneficial aspect of the family of approaches (control, design, and optimization). Ad

ditionally, the book aims to convey simple TP modeling; a new convex hull manipulation based possibilities for optimization; a general framework for stability analysis; standardized modeling and system description; relaxed and universal LMI based design framework; and a gateway to time-delayed systems.

Introduction.- Basic Concepts.- TP Model Transformation.- TPI Model Transformation for the class of non qLPV models.- TP model transformation for systems including time delay.- TP model transformation is a gateway between identification and design.- General Stability Verification.- Relaxed control design via TP model transformation based framework.- qLPV model of the 3DoF prototypical aeroelastic wing section.- TP model based control design.- Convex hull manipulation based optimization.- Relaxed TP model based design framework .- Impedance model with feedback delay in TP model form.- TP transformation based Control Design for Impedance Controlled Robot Gripper.
Acronyms and Abbreviations xiii
The Key Messages of the Book xv
Outline of the Book xix
References xxii
Part I Generalized TP Model Transformation
1 Basic Concepts
3(8)
1.1 Notations
3(1)
1.2 TP Function
4(1)
1.3 TP Model of qLPV Systems
5(1)
1.4 TP Model: TS Fuzzy Model
6(2)
1.5 HOSVD and Quasi-HOSVD Based Canonical Form of TP Functions
8(3)
References
10(1)
2 Algorithms of the TP Model Transformation
11(54)
2.1 Original TP Model Transformation
11(6)
2.1.1 Numerical Example
14(3)
2.2 Bi-Linear TP Model Transformation
17(7)
2.2.1 Numerical Example
22(2)
2.3 Enriched TP Model Transformation
24(1)
2.3.1 Numerical Example
25(1)
2.4 Convex TP Model Transformation: Convex Hull Manipulation
25(10)
2.4.1 Numerical Example
28(7)
2.5 Pseudo TP Model Transformation
35(8)
2.6 Partial TP+ Model Transformation
43(5)
2.6.1 Numerical Example
44(4)
2.7 Multi TP Model Transformation
48(4)
2.7.1 Numerical Example
49(3)
2.8 Generalized TP Model Transformation
52(2)
2.9 Interpolation of the Weighting Functions
54(5)
2.9.1 Numerical Example
55(4)
2.10 Unifying the Weighting Functions
59(1)
2.11 Operations Between TP Functions
60(1)
2.12 Towards Approximation in Case of Non-TP Functions
61(4)
References
62(3)
Part II TP Model Transformation Based Control Design and Optimalization Frameworks
3 TP Model Transformation is a Gateway Between Identification and Design
65(4)
References
66(3)
4 TP Model Transformation Based Control Design Structure
69(4)
References
71(2)
5 General Stability Verification and Control Design
73(14)
5.1 Key Idea
73(1)
5.2 Example
74(3)
5.3 Decoupling the Design, Optimization, and Stability Verification: Generalized Design Frameworks
77(10)
5.3.1 Multi-Way Convex Manipulation
79(3)
5.3.2 Main and Independent TP Model Component Analysis via the HOSVD Based Canonical Form
82(1)
5.3.3 Convex Hull Manipulation
82(1)
5.3.4 LMI Based System Design
83(1)
5.3.5 Exact System Reconstruction: Unified TP Model Forms
84(2)
5.3.6 LMI Based Stability Verification
86(1)
References
86(1)
6 TP1 Model Transformation for the Class of Non-qLPV Models
87(4)
6.1 Key Idea
87(1)
6.2 TP1 Model Transformation
88(1)
6.3 Example of Re-identification
89(2)
Reference
89(2)
7 TPτ Model Transformation for Systems Including Time Delay
91(4)
7.1 TPτ Model Transformation
91(1)
7.2 Example of the TPτ Model Transformation
92(3)
References
93(2)
Part III Analysis of the TP Model Based Design Frameworks via a Complex Example
References
95(2)
8 qLPV Model of the 3DoF Prototypical Aeroelastic Wing Section
97(6)
8.1 Equations of Motion
97(3)
8.2 Including Stribeck Friction
100(3)
Reference
101(2)
9 TP Model Based Control Design
103(14)
9.1 Exact and Convex TP Model of the 3DoF Aeroelastic Wing Section
103(1)
9.2 Control Structure
104(2)
9.3 Selecting LMIs
106(1)
9.4 Results of the Control Design
107(10)
9.4.1 Controller 1: Asymptotic Stabilization and Decay Rate Control
107(1)
9.4.2 Controller 2: Constraint on the Control Value
107(1)
9.4.3 Controller 3: State Feedback Control Including Stribeck Friction
108(1)
9.4.4 Simulation
108(1)
9.4.5 Evaluation
109(6)
References
115(2)
10 Convex Hull Manipulation Based Optimization
117(14)
10.1 Convex Hull Manipulation Based Design Framework
117(3)
10.1.1 Key Steps
118(1)
10.1.2 Step 1: Convex TP Models
118(1)
10.1.3 Step 2: Convex TP Model Interpolation
118(2)
10.1.4 Step 3: LMI Based Design and Stability Verification
120(1)
10.2 Numerical Simulations
120(11)
10.2.1 Determination of the Feasibility Region
120(1)
10.2.2 Results of the Numerical Simulations
121(10)
11 Complexity Manipulation Based Optimization
131(14)
11.1 The Control Design Framework
131(7)
11.1.1 Main TP Model Component Analysis: HOSVD Based Canonical Form of the Model
132(1)
11.1.2 LMI Based System Design
133(4)
11.1.3 Exact System Reconstruction: Unified Weightings in the Polytopes
137(1)
11.1.4 LMI Based Stability Verification
137(1)
11.1.5 Maximizing Omega
137(1)
11.2 Evaluation of the Benefits of the Proposed Control Design
138(7)
References
144(1)
12 TP Model Manipulation Influences the Control Performance and the Feasibility of LMI Based Design
145(17)
12.1 Feasibility
145(9)
12.1.1 Initialization of the Numerical Analysis
145(1)
12.1.2 Results of the 2D Analysis: Feasibility and Convex Hull
146(2)
12.1.3 Results of the 3D Analysis: Feasibility, Convex Hull, and Complexity
148(1)
12.1.4 Results of the 4D Analysis: Feasibility, Convex Hull, Complexity, and Parameter Space
148(6)
12.1.5 Summary
154(1)
12.2 Control Performance
154(6)
12.2.1 Control Performance Results of the Numerical Simulation
154(2)
12.2.2 Evaluation and Comparison of the Derived Cases and the Best Solution
156(4)
Reference
160(2)
Part IV TP Model Based Control Design of the Dual-Excenter Vibration Actuator
References
162(3)
13 qLPV Model of the Dual Excenter Vibration System
165(6)
References
170(1)
14 Convex TP Model of the Dual Excenter Vibration System
171(8)
14.1 The Quasi-HOSVD Based Canonical Form: Approximation and Complexity Trade-Off
171(1)
14.2 The Convex TP Model
172(7)
15 Derivation of the Controller
179(8)
15.1 LMI Based Controller Design
179(3)
15.2 Simulation
182(5)
Reference
184(3)
Part V Control of the Impedance Model Including Varying Time Delay via TPτ Model Transformation
16 Impedance Control for Force Reflecting Telemanipulation
187(8)
16.1 Impedance Control with Feedback Delay
188(2)
16.2 Control Structure for Stability Preservation
190(5)
References
193(2)
17 Impedance Model with Varying Feedback Delay in TP Model Form
195(22)
17.1 The Quasi-HOSVD Based Canonical Form
195(4)
17.1.1 Exact Quasi-HOSVD Based Canonical Form
195(3)
17.1.2 Executing Trade-off by TPτ Model Transformation
198(1)
17.2 Manipulation of the Convex Hull
199(12)
17.2.1 The Vertices of the Exact TP Model
204(4)
17.2.2 The 5 Vertices of the Reduced TP Model
208(2)
17.2.3 The 4 Vertices of the Reduced TP Model
210(1)
17.2.4 The 3 Vertices of the Reduced TP Model
211(1)
17.3 Validation of the Convex TP Model
211(6)
17.3.1 Constant Time-Delay
212(2)
17.3.2 Varying Time-Delay
214(1)
Reference
215(2)
18 TPτ Transformation Based Control Design for Impedance Controlled Robot Gripper
217
18.1 The Control Problem
217(1)
18.2 Execution of the TPτ Model Transformation
218(1)
18.3 LMI-Based Multi-Objective Controller and Observer Design
218(1)
18.4 Resulting Controller and Observer Gains
219(2)
18.4.1 Controller-Observer 1
220(1)
18.4.2 Controller-Observer 2
220(1)
18.4.3 Controller-Observer 3
221(1)
18.5 Evaluation and Validation of the Control Design
221
References
230