Muutke küpsiste eelistusi

E-raamat: Transmit Receive Modules for Radar and Communication Systems

  • Formaat: 268 pages
  • Ilmumisaeg: 31-Jan-2015
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781608079803
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 87,75 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 268 pages
  • Ilmumisaeg: 31-Jan-2015
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781608079803
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The use of electronically scanned phased arrays is increasing in systems such as radar, wireless networks, and satellite ground terminals. An important and necessary component for these systems is the transmit receive (T/R) module, which provides the amplification and electronic beam steering that is required for proper function. This new resource presents a comprehensive overview of all design, fabrication, integration, and implementation issues associated with T/R modules for radar and communications. This book provides engineers and researchers with practical designs and 44 examples of analysis, circuits, and components used in T/R modules. It also provides a solid explanation of the theory for how T/R modules operate and how they can be optimized. In addition, this book shows how the latest technical advances in silicon germanium (SiGe) and gallium nitride (GaN) are allowing levels of performance that were previously unachievable. The book concludes with informative chapters on testing, cost considerations, and the future of next generation T/R modules.

Muu info

Practicing engineers in microwave, radar, sitcom, antennas, and wireless; Graduate students and researchers working in the field of commercial communications and military radar; Managers who develop and use transmit receive modules.
Preface xv
Acknowledgments xix
1 Phased Arrays 1(20)
1.1 Phased Arrays in Radar and Communication Systems
1(4)
1.2 Antennas
5(1)
1.3 Antenna Patterns and Line Arrays
5(1)
1.4 Electronically Steerable Antennas
6(4)
1.5 Radar Equation for Targets
10(1)
1.6 Radar Equation for Weather
11(5)
1.7 Phased Arrays for Communication Systems
16(3)
1.8 Conclusions
19(1)
Problems
19(1)
References
19(2)
2 Transmit/Receive Modules 21(40)
2.1 Introduction to Transmit/Receive Modules
21(2)
2.2 Early T/R Module Development Efforts
23(1)
2.3 MMIC-Based T/R Modules
23(1)
2.4 T/R Module Performance Requirements
24(2)
2.5 T/R Module Components
26(30)
2.5.1 Transmit/Receive Switches
26(2)
2.5.2 Phase Shifter
28(3)
2.5.3 Attenuators
31(3)
2.5.4 Core Chip
34(1)
2.5.5 Driver Amplifier
34(4)
2.5.6 Power Amplifier
38(6)
2.5.7 Circulator or Duplexer
44(1)
2.5.8 Limiter or Receive Protect Circuit
45(4)
2.5.9 Low-Noise Amplifier
49(7)
2.6 Module Control and Power Conditioning
56(1)
2.7 Conclusions
57(1)
Problems
58(1)
References
59(2)
3 Semiconductors for T/R Modules 61(24)
3.1 Introduction
61(1)
3.2 Semiconductor Materials
62(12)
3.2.1 GaAs
62(5)
3.2.2 Heterostructures
67(4)
3.2.3 SiC
71(1)
3.2.4 GaN
72(1)
3.2.5 InP
73(1)
3.2.6 SiGe
73(1)
3.3 RF Semiconductor Wafer Fabrication Processes
74(4)
3.3.1 Isolation
74(1)
3.3.2 Ohmic Contacts
74(1)
3.3.3 Gate Formation
75(1)
3.3.4 Dielectric Deposition
76(1)
3.3.5 Electroplating
77(1)
3.3.6 Air Bridges
77(1)
3.4 Active Devices
78(4)
3.4.1 GaAs MESFETs
78(1)
3.4.2 GaAs PHEMTs
79(1)
3.4.3 GaN HEMTs
80(2)
3.5 MMICs
82(1)
3.6 Conclusions
82(1)
Problems
83(1)
References
83(2)
4 Signal Integrity Issues in T/R Modules 85(30)
4.1 Introduction to Signal Integrity
85(2)
4.2 Chip-Level Interconnects
87(15)
4.2.1 Wire Bonding Methods
87(1)
4.2.2 Wire Bond Modeling
88(5)
4.2.3 Flip-Chip Methods
93(9)
4.3 Package/Module-Level Interconnect
102(2)
4.3.1 Module Interconnects
102(1)
4.3.2 SMT Package Interconnects
102(2)
4.4 Transmission Line Interconnects
104(2)
4.5 Coupling Between Interconnects
106(1)
4.6 Vertical Transition Interconnects
107(2)
4.7 Module Resonances
109(3)
4.8 Conclusions
112(1)
Problems
112(1)
References
113(2)
5 Materials for T/R Modules 115(30)
5.1 Introduction to Materials
115(2)
5.2 Electrical Parameters and Their Measurement
117(10)
5.2.1 Dielectric Constant
117(2)
5.2.2 Loss Tangent
119(1)
5.2.3 Measurement of Dielectric Constant and Loss Tangent
120(5)
5.2.4 Metal Electrical Conductivity
125(2)
5.3 Mechanical Parameters
127(2)
5.3.1 Thermal Conductivity
127(2)
5.4 Ceramic Materials
129(8)
5.4.1 Thin-Film Ceramic
130(1)
5.4.2 Thick-Film Ceramic
131(3)
5.4.3 Thermally Enhanced Thick-Film Processes
134(1)
5.4.4 High-Temperature Co-Fired Ceramic (HTCC)
134(2)
5.4.5 Low-Temperature Co-Fired Ceramic (LTCC) Materials
136(1)
5.5 Laminate Packaging
137(4)
5.5.1 Laminate Board Fabrication
137(3)
5.5.2 High-Performance Laminate Materials
140(1)
5.5.3 Liquid Crystal Polymers
140(1)
5.5.4 MCM-L Laminate Multichip Modules
141(1)
5.6 Conclusions
141(1)
Problems
142(1)
References
142(3)
6 Heat Issues and Solutions for T/R Modules 145(22)
6.1 Introduction to Thermal Issues and Solutions
145(1)
6.2 Heat Flux in MMIC High-Power Amplifiers
146(4)
6.3 Amplifier Efficiency and Dissipated Thermal Power
150(2)
6.4 Thermal Resistance and Device Junction Temperature
152(1)
6.5 Example of Heat Dissipated by Components in a T/R Module
153(1)
6.6 Reliability Calculations
154(3)
6.7 Diamond-Enhanced GaN High-Power Amplifiers for T/R Modules
157(2)
6.8 Thermal Simulations Using SPICE
159(2)
6.9 Thermal Measurements
161(3)
6.9.1 Electrical Test Methods
161(1)
6.9.2 Optical Methods
162(1)
6.9.3 Temperature Measurements Using Liquid Crystal Thermography
163(1)
6.9.4 Thermal Design Using Surrogate Validation Chips
164(1)
6.10 Conclusions
164(1)
Problems
165(1)
References
165(2)
7 MMIC Fabrication and T/R Module Manufacturing 167(18)
7.1 Introduction
167(1)
7.2 MMIC Fabrication
168(6)
7.2.1 MMIC Facilities
168(2)
7.2.2 MMIC Fabrication Processes
170(3)
7.2.3 MMIC Foundry Procedures
173(1)
7.3 T/R Module Manufacturing
174(9)
7.3.1 T/R Module Manufacturing Facilities
174(1)
7.3.2 T/R Module Manufacturing Processes
175(8)
7.4 Conclusions
183(1)
Problems
183(1)
References
183(2)
8 Testing of MMICs and T/R Modules 185(20)
8.1 Introduction to Testing
185(1)
8.2 MMIC Testing
185(7)
8.2.1 Incoming Materials Testing
185(2)
8.2.2 In-Process Testing
187(1)
8.2.3 On-Wafer RF Testing
188(2)
8.2.4 MMIC Screening Tests
190(1)
8.2.5 MMIC Reliability Testing
191(1)
8.3 T/R Module Specifications
192(2)
8.4 T/R Module Testing
194(7)
8.4.1 Key Electrical Parameters
194(5)
8.4.2 Example of Key Parameter Requirements on an X-Band T/R Module
199(1)
8.4.3 Automated Electrical Test Set
200(1)
8.5 Conclusions
201(1)
Problems
201(1)
References
202(3)
9 MMIC and T/R Module Cost 205(14)
9.1 Introduction
205(1)
9.2 MMIC Cost
206(6)
9.2.1 MMIC Wafer Fabrication Cost
206(1)
9.2.2 Wafer Fabrication Process Yield
207(2)
9.2.3 Wafer Diameter Impact on MMIC Cost
209(1)
9.2.4 Impact of MMIC Fabrication Facility Loading on Cost
209(1)
9.2.5 MMIC Cost Based on Area or Output Power
210(2)
9.3 T/R Module Cost
212(2)
9.4 Cost Reduction
214(3)
9.4.1 MMIC Cost Reduction
214(2)
9.4.2 T/R Module Cost Reduction
216(1)
9.5 Conclusions
217(1)
Problems
217(1)
References
218(1)
10 Next-Generation T/R Modules 219(12)
10.1 Introduction
219(1)
10.2 Single-Chip T/R Module
220(2)
10.3 Wafer-Scale Phased Array
222(1)
10.4 Si-CMOS: The Lowest-Cost Single-Chip T/R
222(1)
10.5 Digital Beamforming
223(2)
10.6 Hybrid Digital/Analog Beam Forming
225(1)
10.7 Switch Beam and Butler Matrix Phased Arrays
225(1)
10.8 Highly Integrated Packaging of T/R Modules
226(1)
10.9 Path to Low-Cost Systems: Open Architectures
227(1)
10.10 Conclusions
228(1)
Problems
228(1)
References
229(2)
About the Authors 231(2)
Index 233
Rick Sturdivant earned a M.S.E.E. from UCLA and has been president of Microwave Products and Technology, Inc. for the last 12 years. His technical interests are in electronic packaging, transmit/receive modules, and phased arrays. Mike Harris earned a M.S. in electrical engineering from the Georgia Institute of Technology. Hedeveloped semiconductor processes for GaAs PHEMTs and GaN HEMTs and has been involved in T/Rmodule programs for over 25 years. He is retired, but continues to teach a professional education course on T/R Modules for Phased Array Radar.