Muutke küpsiste eelistusi

E-raamat: Transparent Ceramics

  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book covers the latest progress in the field of transparent ceramics, emphasizing their processing as well as solid-state lasers. It consists of 10 chapters covering the synthesis, characterization and compaction, fundamentals of sintering, densification of transparent ceramics by different methods as well as transparent ceramic applications. This book can be used as a reference for senior undergraduate to postgraduate students, researchers, engineers and material scientists working in solid-state physics.

Preface.- Introduction.- Transparent Ceramic Materials.- Ceramic Powder Synthesis.- Powder Characterization and Compaction.- Sintering and Densification (I) - Conventional Sintering Technologies.- Sintering and Densification (II) - New Sintering Technologies.- Sintering and Densification of Transparent CeramicsGrain Growth and Microstructure Development.- Laser Applications.- Other Applications of Transparent Ceramics.
1 Introduction 1(28)
1.1 Transparency
1(1)
1.2 Transparent Materials
1(3)
1.3 Important Issues on Transparency Important
4(3)
1.4 History of Solid-State Lasers
7(6)
1.4.1 Lasers
7(2)
1.4.2 Single Crystals
9(1)
1.4.3 Transparent Ceramics
10(3)
1.5 Performance of Solid-State Lasers
13(1)
1.5.1 Laser Materials
13(1)
1.5.2 Pumping Systems and Laser Resonators
14(1)
1.6 Selection of Laser Material
14(9)
1.6.1 Laser Active Ions
15(7)
1.6.2 Host Materials
22(1)
1.7 Other Applications of Transparent Ceramics
23(1)
1.8 Motivation and Objectives of the Book
23(1)
1.9 Outline of the Book
23(2)
References
25(4)
2 Transparent Ceramic Materials 29(64)
2.1 Introduction
29(1)
2.2 Simple Oxides
29(19)
2.2.1 Alumina (Al2O3)
29(6)
2.2.2 Zirconia (ZrO2)
35(3)
2.2.3 Sesquioxides
38(8)
2.2.4 Magnesia (MgO)
46(2)
2.3 Complex Oxides
48(12)
2.3.1 Garnet
48(6)
2.3.2 Spinel (MgAl2O4)
54(6)
2.4 Electro-optic Ferroelectric Ceramics
60(6)
2.4.1 PLZT Ceramics
61(2)
2.4.2 Other Ferroelectric Ceramics
63(3)
2.5 Mullite
66(2)
2.6 Other Oxide Ceramics
68(4)
2.6.1 Newly Emerged Oxide Ceramics
68(1)
2.6.2 Transparent Ceramics Derived from Glasses
69(2)
2.6.3 Multiphase Transparent Ceramics
71(1)
2.7 Nonoxide Ceramics
72(5)
2.7.1 A1ON
72(3)
2.7.2 Aluminum Nitride (AIN)
75(1)
2.7.3 Sialon
75(2)
2.8 Summary
77(1)
References
77(16)
3 Ceramic Powder Synthesis 93(98)
3.1 Introduction
93(2)
3.2 Synthesis of Precursor Powders
95(80)
3.2.1 Solid-State Reaction Methods
95(27)
3.2.2 Wet-Chemical Routes
122(53)
3.3 Summary
175(1)
References
175(16)
4 Powder Characterization and Compaction 191(100)
4.1 Introduction
191(1)
4.2 Characterizations of Ceramic Powder
192(28)
4.2.1 Physical Properties
192(2)
4.2.2 Particle Size and Size Distribution
194(5)
4.2.3 Particle Shapes
199(1)
4.2.4 Measurement of Particle Size and Size Distribution
200(6)
4.2.5 Surface Area
206(2)
4.2.6 Porosity of Particles
208(4)
4.2.7 Chemical Compositions
212(3)
4.2.8 Crystal Structure and Phase Composition
215(1)
4.2.9 Surface Properties
216(4)
4.3 Compaction of Ceramic Powders
220(61)
4.3.1 Packing of Particles
220(5)
4.3.2 Additives and Ceramic Forming
225(5)
4.3.3 Powder Compaction
230(47)
4.3.4 Drying of Granular Ceramics
277(2)
4.3.5 Binder Removal
279(1)
4.3.6 Characterization of Green Bodies
280(1)
4.4 Summary
281(1)
References
281(10)
5 Sintering and Densification (I)-Conventional Sintering Technologies 291(104)
5.1 Introduction
291(1)
5.2 Fundamental Aspects of Sintering
292(33)
5.2.1 Driving Forces of Sintering
292(1)
5.2.2 Defects in Crystalline Solids
293(11)
5.2.3 Diffusion in Crystalline Solids
304(8)
5.2.4 Chemical Potential
312(6)
5.2.5 Diffusional Flux Equations
318(3)
5.2.6 Vapor Pressure of Curved Surfaces
321(1)
5.2.7 Diffusion in Ionic Crystals-Ambipolar Diffusion
322(3)
5.3 Solid-State and Viscous Sintering
325(38)
5.3.1 Brief Description
325(1)
5.3.2 Sintering Mechanisms
326(1)
5.3.3 Grain Boundary Effects
327(2)
5.3.4 Theory of Sintering
329(1)
5.3.5 Scaling Laws
329(5)
5.3.6 Analytical Methods
334(12)
5.3.7 Numerical Simulation of Sintering
346(3)
5.3.8 Phenomenological Sintering Equations
349(1)
5.3.9 Sintering Diagrams
350(1)
5.3.10 Sintering at Pressures
351(5)
5.3.11 Stress Intensification Factor
356(2)
5.3.12 Sintering Stress
358(1)
5.3.13 Alternative Sintering Equations
359(4)
5.4 Liquid-Phase Sintering
363(26)
5.4.1 Brief Introduction
363(1)
5.4.2 Characteristics of Liquid-Phase Sintering
363(3)
5.4.3 Stages of Liquid-Phase Sintering
366(1)
5.4.4 Thermodynamic and Kinetic Factors
366(7)
5.4.5 Grain Boundary Films
373(1)
5.4.6 Mechanisms of Liquid-Phase Sintering
374(13)
5.4.7 Hot Pressing with Liquid Phase
387(1)
5.4.8 Phase Diagrams in Liquid-Phase Sintering
387(1)
5.4.9 Activated Sintering and Vitrification
388(1)
5.5 Concluding Remarks
389(1)
References
390(5)
6 Sintering and Densification (II)-New Sintering Technologies 395(72)
6.1 Introduction
395(1)
6.2 Electric Current Activated/Assisted Sintering (ECAS)
395(58)
6.2.1 Brief Description
395(1)
6.2.2 Working Principles
396(7)
6.2.3 Brief History of ECAS Processes
403(2)
6.2.4 Modeling and Simulation
405(48)
6.3 Microwave Sintering
453(8)
6.3.1 Brief Introduction
453(2)
6.3.2 Theoretical Aspects
455(4)
6.3.3 Heat Transfer and Sintering
459(2)
6.3.4 Nonthermal Effects
461(1)
6.4 Summary
461(1)
References
462(5)
7 Sintering and Densification of Transparent Ceramics 467(52)
7.1 Introduction
467(1)
7.2 Vacuum Sintering
467(9)
7.3 Hot Pressure (HP) Sintering
476(7)
7.4 Hot Isostatic Pressure (HIP) Sintering
483(5)
7.5 SPS Processed Transparent Ceramics
488(14)
7.6 MW-Processed Transparent Ceramics
502(8)
7.7 Concluding Remarks
510(1)
References
510(9)
8 Grain Growth and Microstructure Development 519(62)
8.1 Introduction
519(1)
8.2 General Concepts
520(3)
8.2.1 Features of Grain Growth
520(1)
8.2.2 Microscopic Features of Grain Growth
520(1)
8.2.3 Driving Force of Grain Growth
520(1)
8.2.4 Abnormal Grain Growth
521(2)
8.2.5 Grain Growth Control
523(1)
8.3 Ostwald Ripening and LSW Theory
523(6)
8.3.1 LSW Theory
525(1)
8.3.2 Interface Reaction Mechanism
525(2)
8.3.3 Diffusion-Controlled Mechanism
527(1)
8.3.4 Deviation and Modification of LSW Theory
528(1)
8.3.5 Time-Dependent Ostwald Ripening
528(1)
8.4 Topological and Interfacial Tensions
529(1)
8.5 Normal Grain Growth in Dense Solids
530(5)
8.5.1 The Burke and Turnbull Model
530(2)
8.5.2 Mean-Field Theory
532(1)
8.5.3 Topological Analysis
533(1)
8.5.4 Simulation of Normal Grain Growth
534(1)
8.6 Abnormal Grain Growth
535(18)
8.6.1 Origins of Abnormal Grain Growth
536(1)
8.6.2 Applications of Abnormal Grain Growth
537(16)
8.7 Grain-Boundary Mobility
553(7)
8.7.1 Effect of Fine Second-Phase Particles
554(3)
8.7.2 Effect of Dopants-Solute Drag
557(3)
8.8 Grain Growth and Pore Evolution
560(3)
8.8.1 Thermodynamics of Pore-Boundary Interactions
560(2)
8.8.2 Kinetics of Pore-Boundary Interactions
562(1)
8.8.3 Grain Growth Kinetics
563(1)
8.9 Simultaneous Densification and Grain Growth
563(5)
8.10 Strategies to Control Microstructure of Ceramics
568(5)
8.10.1 Sintering at External Pressures
568(1)
8.10.2 Use of Dopants and Inclusions
569(1)
8.10.3 Use of Fine Particles with Uniform Packing
570(1)
8.10.4 Control of Firing Schedule
570(3)
8.10.5 Use of Liquid-Phase Sintering
573(1)
8.11 Concluding Remarks
573(1)
References
574(7)
9 Laser Applications 581(94)
9.1 Introduction
581(1)
9.2 Ceramic Solid-State Lasers
581(61)
9.2.1 Pumping Schemes
582(5)
9.2.2 Radiative and Nonradiative Processes
587(5)
9.2.3 Ceramic Laser Materials and Components
592(1)
9.2.4 Practical Ceramic Lasers
593(49)
9.3 Advanced Ceramic Lasers
642(17)
9.3.1 Motivation and Overview
642(1)
9.3.2 Composite Ceramic Lasers
643(10)
9.3.3 Fiber Ceramic Lasers
653(6)
9.4 Summary
659(1)
References
659(16)
10 Other Applications 675
10.1 Brief Introduction
675(1)
10.2 Lighting
675(7)
10.2.1 Sapphire
676(1)
10.2.2 Alumina Ceramics with Fine Grains
676(2)
10.2.3 A1ON (Aluminum Oxynitride)
678(1)
10.2.4 YAG (Yttrium Aluminate Garnet)
678(1)
10.2.5 Rare-Earth Oxide (Re203)
679(3)
10.3 Scintillators
682(14)
10.3.1 Brief Description
682(2)
10.3.2 Properties of Scintillators
684(6)
10.3.3 Transparent Ceramic Scintillators
690(6)
10.4 Ceramic Electro-Optic Devices
696(5)
10.5 Optical Systems (Lens)
701(3)
10.6 Armors and Windows/Domes
704(16)
10.6.1 Brief Description
704(1)
10.6.2 Transparent Ceramics Armors
705(1)
10.6.3 Transparent Armor Design and Dynamic Responses
706(14)
10.7 Other Applications
720(5)
10.8 Conclusions
725(1)
References
726