Muutke küpsiste eelistusi

E-raamat: Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple

(Emeritus McCann Professor of Chemical and Biomolecular Engineering, and Professor of Mathematics, Lehigh University, USA),
  • Formaat: PDF+DRM
  • Ilmumisaeg: 09-Dec-2010
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780123846532
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 58,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 09-Dec-2010
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780123846532
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods.

This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs.

 The Matlab and Maple software will be available for download from this website shortly.

www.pdecomp.net

Arvustused

"This book surveys some of the new developments in analytical and numerical computer solution methods for partial differential equations with applications to physical, chemical, and biological problems. The development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods." --Zentralblatt MATH 1228-1

Muu info

Surveys new developments in analytical and numerical methods, and relates the two through a series of partial differential equations examples
Preface xi
1 Introduction to Traveling Wave Analysis
1(6)
Traveling Wave Solutions
1(3)
Residual Function Solutions
4(2)
References
6(1)
2 Linear Advection Equation
7(40)
Smooth Solutions
7(13)
Solutions with Sharp Gradients or Discontinuities
20(17)
Appendix
37(7)
References
44(3)
3 Linear Diffusion Equation
47(10)
Reference
55(2)
4 A Linear Convection Diffusion Reaction Equation
57(10)
Reference
65(2)
5 Diffusion Equation with Nonlinear Source Terms
67(44)
Appendix 1
102(4)
Appendix 2
106(3)
References
109(2)
6 Burgers-Huxley Equation
111(12)
Appendix
118(3)
References
121(2)
7 Burgers-Fisher Equation
123(12)
Appendix
128(5)
Reference
133(2)
8 Fisher-Kolmogorov Equation
135(12)
Appendix
141(5)
References
146(1)
9 Fitzhugh-Nagumo Equation
147(26)
Appendix
164(7)
References
171(2)
10 Kolmogorov-Petrovskii-Piskunov Equation
173(12)
Appendix
179(4)
References
183(2)
11 Kuramoto-Sivashinsky Equation
185(12)
Appendix
192(3)
References
195(2)
12 Kawahara Equation
197(42)
Appendix 1
217(17)
Appendix 2
234(3)
References
237(2)
13 Regularized Long Wave Equation
239(22)
Appendix
254(6)
References
260(1)
14 Extended Bernoulli Equation
261(14)
Appendix
261(12)
References
273(2)
15 Hyperbolic Liouville Equation
275(18)
Appendix
284(8)
References
292(1)
16 Sine-Gordon Equation
293(16)
Appendix
301(6)
References
307(2)
17 Mth-Order Klein-Gordon Equation
309(30)
Appendix
336(2)
References
338(1)
18 Boussinesq Equation
339(38)
Appendix
370(4)
References
374(3)
19 Modified Wave Equation
377(14)
Appendix
387(2)
Reference
389(2)
Appendix: Analytical Solution Methods for Traveling Wave Problems
391(50)
A.1 Introduction
391(1)
A.2 Tanh Method
391(20)
A.3 Exp Method
411(7)
A.4 Riccati Equation Method
418(11)
A.5 Direct Integration
429(1)
A.6 Factorization
430(5)
A.7 Additional Solutions by Addition of Arbitrary Constants
435(1)
A.8 Other Methods
435(1)
A.9 Maple Built-in Procedure TWSolutions
436(5)
References
437(4)
Index 441
Dr. William E. Schiesser is Emeritus McCann Professor of Chemical and Biomolecular Engineering, and Professor of Mathematics at Lehigh University. He holds a PhD from Princeton University and a ScD (hon) from the University of Mons, Belgium. His research is directed toward numerical methods and associated software for ordinary, differential-algebraic and partial differential equations (ODE/DAE/PDEs), and the development of mathematical models based on ODE/DAE/PDEs. He is the author or coauthor of more than 16 books, and his ODE/DAE/PDE computer routines have been accessed by some 5,000 colleges and universities, corporations, and government agencies.