Muutke küpsiste eelistusi

E-raamat: Trends in Theory and Practice of Nonlinear Differential Equations

Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 338,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is based on an International Conference on Trends in Theory and Practice of Nonlinear Differential Equations held at The University of Texas at Arlington. It aims to feature recent trends in theory and practice of nonlinear differential equations.
CONTENTS -- Honoring Professor E. A. Coddington -- Preface -- Contributors -- Unbounded Perturbations and the Existence of Differentiable Solutions of the Cauchy Problem in Banach Space /Nazar Hussein Abdelaziz -- Escape Time by Fixed Point Theorem /A. R. Aftabizadeh -- Asymptotic Behaviour of Solutions of Nth Order Differential Equations with or without Delay /Olusola Akinyele and R. S. Dahiya -- Nonconstant Periodic Solutions of Nonlinear Differential Equations /Shair Ahmad and Francisco Montes de Oca -- Evolution Water Coning Problem /Y. Amirat, A. El Kolli and A. Ziani -- Conditions for Periodic Solutions to Hill?s Equation with an even Periodic Coefficient /Bernard A. Asner, Jr. -- Metrics and Tolerances /Prem N. Bajaj -- Global Existence for Nonlinear Second Order Differential Equations /John V. Baxley -- Asymptotically Nonresonant Nonlinear Equations /Ronald I. Becker -- Boundedness of Oscillatory Solutions of Fourth Order Linear Ordinary Homogeneous Differential Equations /Abdelali Benharbit -- A Neighborhood of the Hopf Singularity /S. R. Bernfeld -- Second Order Differential Systems with Generalized Nonlinear Boundary Conditions /S. R. Bernfeld -- Dynamics and Bifurcation in one Dimension /Louis Block and David Hart -- The Effect of Harvesting on Population Systems /Fred Brauer -- Invariants of Vortex Motions in the Plane /Jacob Burbea -- Instability and Stability in Volterra Equations /T. A. Burton and W. E. Mahfoud -- Alternating Bounds Converging to the Solution of a Semi-linear Euler-Poisson-Darboux Equation /C. Y. Chan -- Comparison Theorems and Stochastic Boundary Value Problems /Jagdish Chandra and G. S. Ladde -- Constrained Global Null Controllability of Nonlinear Delay Systems /Ethelbert N. Chukwu -- Spectral Theory for Symmetric Pairs of Ordinary Differential Operators /Earl A. Coddington -- Almost Periodic Solutions to Some Nonlinear Parabolic Equations /C. Corduneanu -- Conjugate Points and Disconjugacy of Second Order Systems /Fozi M. Dannan -
V. LAKSHMIKANTHAM is Professor and Chairman in the Department of Mathematics at the University of Texas at Arlington. In addition, he is coeditor of the journal Stochastic Analysis and Applications (Marcel Dekker, Inc.), editor of Nonlinear Analysis, and a member of the editorial boards of six other journals. He is an internationally known mathematician, having published several monographs and over 150 papers in the fields of ordinary and partial differential equations, nonlinear and stochastic analysis, and abstract differential equations.