Muutke küpsiste eelistusi

E-raamat: Tubular String Characterization in High Temperature High Pressure Oil and Gas Wells

  • Formaat: 432 pages
  • Sari: Multiphysics Modeling
  • Ilmumisaeg: 30-Oct-2018
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351231497
  • Formaat - EPUB+DRM
  • Hind: 113,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 432 pages
  • Sari: Multiphysics Modeling
  • Ilmumisaeg: 30-Oct-2018
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351231497

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

High temperature, high oil pressure, oil and gas well completion testing have always been a technical challenge and basic theoretical research is one of the key factors needed to ensure a successful completion test. The completion test basic theory includes: a stress analysis of the completion string, completion string buckling behavior, and temperature and pressure distribution prediction. The completion string is the main bearing and power transmission component for oil and gas well operations and production, and it is required to take on a combination of loads, which result in completion string deformation. Because of these complex relationships, completion string stress analysis has become increasingly more complicated.

This book discusses the characters of tubular strings in HTHP (High Temperature - High Pressure) oil and gas wells. These characters include the mechanical behavior of tubular strings and the temperature and pressure variation of tubular strings in different conditions. Mathematical models are established for different conditions and solution existence and uniqueness of some models is discussed, providing algorithms corresponding to the different models. Numerical experiments are presented to verify the validity of models and the feasibility of algorithms, and the impact of the parameters of models for oil and gas wells is also discussed.

This book is written for production and testing engineers to provide them with the tools to deal more effectively with the numerical decisions they have to take and for researchers and technicians in petroleum and gas testing and production engineering. Finally, it is also intended to serve as a reference book for mathematicians, college teachers and students.
About the book series vii
Editorial board of the book series ix
Preface xvii
Acronyms xix
Symbols xxi
About the authors xxiii
1 Background
1(10)
1.1 Placing the test string
1(1)
1.2 Seating condition
2(3)
1.3 Perforation condition
5(1)
1.4 Injection condition
5(1)
1.5 Production condition
6(1)
1.6 Shut-in condition
7(1)
1.7 Re-opened condition
7(4)
2 Element theory
11(8)
2.1 Differential geometry
11(4)
2.1.1 Frenet frame
11(1)
2.1.2 Geometric description of the 3D curved borehole
12(2)
2.1.3 Geometry description of tubular string in 3D inclined well-bore
14(1)
2.2 Variational methods
15(4)
3 Tubular string buckling theoretical analysis
19(34)
3.1 Introduction
19(1)
3.2 Deformation differential equations modelling
20(9)
3.2.1 Tubular string differential element force analysis
20(2)
3.2.2 Static force equilibrium equation for the tubular string infinitesimal
22(2)
3.2.3 The buckling differential equation for the tubular string
24(5)
3.3 The equivalent variational problem
29(11)
3.3.1 Tubular displacement analysis
30(1)
3.3.2 External force and deformation energy analysis
31(2)
3.3.3 The equivalent variational problem
33(7)
3.4 Simplified analysis of the model
40(13)
3.4.1 The buckling critical load and tubular string deformation solution
42(6)
3.4.2 The axial buckling deformation analysis of the downhole string
48(5)
4 Mechanical analysis for the placement of the test string
53(8)
4.1 Mechanical analysis
53(1)
4.2 Temperature distribution
53(1)
4.3 Pressure distribution
53(1)
4.4 Model calculation
53(3)
4.4.1 The internal and external pressure calculation
54(1)
4.4.2 The axial force distribution, the normal pressure and the moment calculation
54(1)
4.4.3 Calculation procedures
55(1)
4.5 Example calculation
56(5)
4.5.1 Simulation parameters
57(1)
4.5.2 Main results
58(3)
5 Setting the mechanical analysis
61(12)
5.1 Hydraulic packer force analysis in deviated HPHT wells
62(11)
5.1.1 Model building
62(4)
5.1.2 Computing parameters
66(1)
5.1.3 Algorithm
67(1)
5.1.4 Numerical simulation
67(4)
5.1.5 Discussion
71(2)
6 Re-opened mechanical analysis
73(12)
6.1 Introduction
73(1)
6.2 APDTU-VTPF
74(11)
6.2.1 HTHP wells characteristics
74(1)
6.2.2 The packer principle
74(1)
6.2.3 Theoretical model
75(5)
6.2.4 Solution methodology
80(1)
6.2.5 Analysis of field case
81(4)
7 Predicting pressure and temperature in HTHP injection wells
85(114)
7.1 Introduction
85(4)
7.2 PDPT-IW
89(21)
7.2.1 Physical model
89(1)
7.2.2 Mathematical model
89(4)
7.2.3 Solution to the model
93(10)
7.2.4 Solving model
103(2)
7.2.5 Numerical simulation
105(3)
7.2.6 Sensitivity analysis
108(2)
7.3 PDPT-SIBUHT
110(24)
7.3.1 Mathematical model
111(4)
7.3.2 Solution of the model
115(14)
7.3.3 Solution model
129(3)
7.3.4 Numerical simulation
132(2)
7.4 PTPTF-IWLFM
134(9)
7.4.1 Model building
124(14)
7.4.2 Model solution
138(3)
7.4.3 Examples calculation
141(2)
7.5 PTPD-IGWTE
143(9)
7.5.1 Mathematical model of heat transmission in the well-bore
144(3)
7.5.2 Pressure in the well-bore mathematical model
147(1)
7.5.3 Model solution
148(3)
7.5.4 Numerical simulation
151(1)
7.6 DFA-SIPVF
152(17)
7.6.1 The model dryness fraction in the varied (T, P) fields
154(1)
7.6.2 Varied (T, P) fields analysis
155(5)
7.6.3 Algorithm steps
160(2)
7.6.4 Simulation and discussion
162(1)
7.6.5 Sensitivity analysis
163(6)
7.7 AASDT-SITP
169(9)
7.7.1 Force analysis on the tubular string
169(1)
7.7.2 The tubular axial load and axial stress
170(1)
7.7.3 Analysis of axial deformation
171(2)
7.7.4 Varied (T, P) fields analysis
173(1)
7.7.5 Numerical implementation
173(2)
7.7.6 Numerical simulation
175(1)
7.7.7 Main results and analysis
176(2)
7.8 NMSQ-DWV
178(21)
7.8.1 Basic assumptions
178(1)
7.8.2 The steam quality model with variable (T, P) fields
178(3)
7.8.3 The analysis of the variable (T, P) fields
181(4)
7.8.4 Numerical implementation
185(3)
7.8.5 Simulation and discussion
188(1)
7.8.6 Trend analysis
188(2)
7.8.7 Sensitivity analysis
190(7)
7.8.8 Conclusion
197(2)
8 Predicting of pressure and temperature in HTHP production wells
199(112)
8.1 Introduction
199(3)
8.2 PTP-GW
202(21)
8.2.1 Physical model
202(1)
8.2.2 Coupled differential equations system model
203(4)
8.2.3 Model solution
207(7)
8.2.4 Solving the model
214(3)
8.2.5 Numerical simulation
217(1)
8.2.6 Sensitivity analysis
217(6)
8.3 PTPTV-GW
223(29)
8.3.1 The coupled system differential equations model
223(2)
8.3.2 Solution of the model
225(10)
8.3.3 Solving the model
235(2)
8.3.4 Numerical simulation
237(1)
8.3.5 Results and analysis
237(8)
8.3.6 Error analysis
245(7)
8.4 PDTPVD-GLTPTF
252(9)
8.4.1 Prediction model
252(2)
8.4.2 Model solution
254(2)
8.4.3 Calculation of some parameters
256(1)
8.4.4 Example calculation
257(4)
8.5 NMSOGW-TTBF
261(10)
8.5.1 The coupled system model
261(3)
8.5.2 Model analysis
264(1)
8.5.3 Numerical solution
265(1)
8.5.4 Calculation of some parameters
266(1)
8.5.5 Initial condition and boundary condition
267(1)
8.5.6 Example calculation
267(4)
8.6 PDPTVD-TBF
271(10)
8.6.1 The coupled system model
271(3)
8.6.2 Model analysis
274(1)
8.6.3 Numerical solution
275(3)
8.6.4 Numerical simulation
278(1)
8.6.5 Sensitivity analysis
278(3)
8.7 PPTHVD-STF
281(30)
8.7.1 The coupled system model
283(5)
8.7.2 Model analysis
288(10)
8.7.3 Numerical solution
298(2)
8.7.4 Numerical simulation and results discussion
300(2)
8.7.5 Sensitivity analysis
302(5)
8.7.6 Comparison analysis
307(4)
9 Predicting the pressure and temperature in shut-in
311(20)
9.1 Introduction
311(1)
9.2 PPT-SPDW
312(8)
9.2.1 Physical model
312(1)
9.2.2 The coupled system model
312(2)
9.2.3 Solution model
314(3)
9.2.4 Numerical simulation
317(3)
9.3 PPTVD-TFSP
320(11)
9.3.1 The coupled system model
320(3)
9.3.2 Model solution
323(2)
9.3.3 Numerical simulation
325(6)
10 Software design and development
331(28)
10.1 Calculation program
331(25)
10.1.1 All conditions calculation
331(22)
10.1.2 Calculation according to conditions
353(3)
10.2 The database
356(3)
References 359(6)
Appendix 365(30)
Subject Index 395(12)
Book series page 407
Jiuping Xu (1962) obtained his Ph.D Applied Mathematics from Tsinghua University, Beijing, China; and a Ph.D in Physical Chemistry from Sichuan University, Chengdu, China, in 1995 and 1999, respectively. Dr. Xu was elected the lifetime academician of the International Academy of Systems and Cybernetic Sciences (IASC) in 2010. He is currently Professor at Sichuan University, the president of International Society for Management Science and Engineering Management, and the vice-president of The Systems Engineering Society of China, the editor in chief of International Journal of Management Science and Engineering Management, the executive-editor in chief of World Journal of Modelling and Simulation. His current research interests include the areas of applied mathematics, physical chemistry, systems science and engineering science. He has published 40 books and over 400 journal papers in Mathematics, Computer and many others.  Prof. Xu was awarded the International Federation of Operations Research Societies (IFORS) prize for development at the IFORS XIV Conference, Vancouver, in 1996, and has received numerous prizes in China, including the China Youth Prize of Science and Technology, in 2004. Zezhong Wu (1970) received his Ph.D in Management Science and Engineering from Sichuan University, China in 2010. Dr. Wu is currently  Professor at Chengdu University of Information Technology, director of The Mathematical Model and The Applied Research Institute of Chengdu University of Information Technology. His current research interests include the areas of applied mathematics, petroleum and gas, mathematical modelling and simulation. He has published 30 journal papers.