Muutke küpsiste eelistusi

E-raamat: Tumor Organoids

Edited by , Edited by
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.

Techniques to Produce and Culture Lung Tumor Organoids
1(16)
Cameron Yamanishi
Kimberly Jen
Shuichi Takayama
Tissue Organoids: Liver
17(18)
Estela Solanas
Iris Pla-Palacin
Pilar Sainz-Arnal
Manuel Almeida
Alberto Lue
Trinidad Serrano
Pedro M. Baptista
Mammary Gland Organoids
35(16)
Rocfo Sampayo
Sol Recouvreux
Maria Ines Diaz Bessone
Marina Simian
Biofabrication Technologies for Developing In Vitro Tumor Models
51(20)
Andrea Mazzocchi
Shay Soker
Aleksander Skardal
Three Dimensional In Vitro Tumor Platforms for Cancer Discovery
71(24)
Manasa Gadde
Dan Marrinan
Rhys J. Michna
Marissa Nichole Rylander
Tissue-Engineered Models for Studies of Bone Metastasis
95(22)
Aaron E. Chiou
Claudia Fischbach
Building Better Tumor Models: Organoid Systems to Investigate Angiogenesis
117(32)
Venktesh S. Shirure
Mary Kathryn Sewell-Loftin
Sandra F. Lam
Tyson D. Todd
Priscilla Y. Hwang
Steven C. George
Microfluidics in Cell and Tissue Studies
149(22)
Shiny Amala Priya Rajan
Parker Hambright
Rosemary Clare Burke
Adam R. Hall
Stiffness-Tuned Matrices for Tumor Cell Studies
171(22)
Amanda M. Smelser
Manuel M. Gomez
Scott Smyre
Melissa L. Fender Pashayan
Jed C. Macosko
Mathematical Modeling of Tumor Organoids: Toward Personalized Medicine
193
Aleksandra Karolak
Katarzyna A. Rejniak
Shay Soker, PhD, is Professor, Regenerative Medicine, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine. Aleksander Skardal, PhD, is Assistant Professor, Regenerative Medicine and Biomedical Engineering, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine.