Muutke küpsiste eelistusi

E-raamat: Tutorials in Chemoinformatics

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 22-Jun-2017
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119137986
  • Formaat - EPUB+DRM
  • Hind: 101,21 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 22-Jun-2017
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119137986

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

30 tutorials and more than 100 exercises in chemoinformatics, supported by online software and data sets

Chemoinformatics is widely used in both academic and industrial chemical and biochemical research worldwide. Yet, until this unique guide, there were no books offering practical exercises in chemoinformatics methods. Tutorials in Chemoinformatics contains more than 100 exercises in 30 tutorials exploring key topics and methods in the field. It takes an applied approach to the subject with a strong emphasis on problem-solving and computational methodologies.

Each tutorial is self-contained and contains exercises for students to work through using a variety of software packages. The majority of the tutorials are divided into three sections devoted to theoretical background, algorithm description and software applications, respectively, with the latter section providing step-by-step software instructions. Throughout, three types of software tools are used: in-house programs developed by the authors, open-source programs and commercial programs which are available for free or at a modest cost to academics. The in-house software and data sets are available on a dedicated companion website.

Key topics and methods covered in Tutorials in Chemoinformatics include:

  • Data curation and standardization
  • Development and use of chemical databases
  • Structure encoding by molecular descriptors, text strings and binary fingerprints
  • The design of diverse and focused libraries
  • Chemical data analysis and visualization
  • Structure-property/activity modeling (QSAR/QSPR)
  • Ensemble modeling approaches, including bagging, boosting, stacking and random subspaces
  • 3D pharmacophores modeling and pharmacological profiling using shape analysis
  • Protein-ligand docking
  • Implementation of algorithms in a high-level programming language

Tutorials in Chemoinformatics is an ideal supplementary text for advanced undergraduate and graduate courses in chemoinformatics, bioinformatics, computational chemistry, computational biology, medicinal chemistry and biochemistry. It is also a valuable working resource for medicinal chemists, academic researchers and industrial chemists looking to enhance their chemoinformatics skills.

List of Contributors xv
Preface xvii
About the Companion Website xix
Part 1 Chemical Databases 1(82)
1 Data Curation
3(34)
Gilles Marcou and Alexandre Varnek
Theoretical Background
3(4)
Software
5(2)
Step-by-Step Instructions
7(27)
Conclusion
34(2)
References
36(1)
2 Relational Chemical Databases: Creation, Management, and Usage
37(30)
Gilles Marcou
Alexandre Varnek
Theoretical Background
37(4)
Step-by-Step Instructions
41(24)
Conclusion
65(1)
References
65(2)
3 Handling of Markush Structures
67(8)
Timur Madzhidov
Ramil Nugmanov
Alexandre Varnek
Theoretical Background
67(1)
Step-by-Step Instructions
68(5)
Conclusion
73(1)
References
73(2)
4 Processing of SMILES, InChl, and Hashed Fingerprints
75(8)
Joao Montargil Aires de Sousa
Theoretical Background
75(1)
Algorithms
76(2)
Step-by-Step Instructions
78(2)
Conclusion
80(1)
References
81(2)
Part 2 Library Design 83(20)
5 Design of Diverse and Focused Compound Libraries
85(18)
Antonio de la Vega de Leon
Eugen Lounkine
Martin Vogt
Jurgen Bajorath
Introduction
85(2)
Data Acquisition
86(1)
Implementation
86(1)
Compound Library Creation
87(3)
Compound Library Analysis
90(5)
Normalization of Descriptor Values
91(1)
Visualizing Descriptor Distributions
92(2)
Decorrelation and Dimension Reduction
94(1)
Partitioning and Diverse Subset Calculation
95(3)
Partitioning
95(2)
Diverse Subset Selection
97(1)
Combinatorial Libraries
98(3)
Combinatorial Enumeration of Compounds
98(1)
Retrosynthetic Approaches to Library Design
99(2)
References
101(2)
Part 3 Data Analysis and Visualization 103(24)
6 Hierarchical Clustering in R
105(14)
Martin Vogt
Jurgen Bajorath
Theoretical Background
105(1)
Algorithms
106(1)
Instructions
107(1)
Hierarchical Clustering Using Fingerprints
108(3)
Hierarchical Clustering Using Descriptors
111(2)
Visualization of the Data Sets
113(3)
Alternative Clustering Methods
116(1)
Conclusion
117(1)
References
118(1)
7 Data Visualization and Analysis Using Kohonen Self-Organizing Maps
119(8)
Jodo Montargil Aires de Sousa
Theoretical Background
119(1)
Algorithms
120(1)
Instructions
121(5)
Conclusion
126(1)
References
126(1)
Part 4 Obtaining and Validation QSAR/QSPR Models 127(114)
8 Descriptors Generation Using the CDK Toolkit and Web Services
129(6)
Joao Montargil Aires de Sousa
Theoretical Background
129(1)
Algorithms
130(1)
Step-by-Step Instructions
131(2)
Conclusion
133(1)
References
134(1)
9 QSPR Models on Fragment Descriptors
135(28)
Vitaly Solov'ev
Alexandre Varnek
Abbreviations
135(1)
DATA
136(25)
ISIDA_QSPR Input
137(2)
Data Split Into Training and Test Sets
139(1)
Substructure Molecular Fragment (SMF) Descriptors
139(3)
Regression Equations
142(1)
Forward and Backward Stepwise Variable Selection
142(1)
Parameters of Internal Model Validation
143(1)
Applicability Domain (AD) of the Model
143(1)
Storage and Retrieval Modeling Results
144(1)
Analysis of Modeling Results
144(4)
Root-Mean Squared Error (RMSE) Estimation
148(3)
Setting the Parameters
151(1)
Analysis of n-Fold Cross-Validation Results
151(2)
Loading Structure-Data File
153(1)
Descriptors and Fitting Equation
154(1)
Variables Selection
155(1)
Consensus Model
155(1)
Model Applicability Domain
155(1)
n-Fold External Cross-Validation
155(1)
Saving and Loading of the Consensus Modeling Results
155(1)
Statistical Parameters of the Consensus Model
156(1)
Consensus Model Performance as a Function of Individual Models Acceptance Threshold
157(1)
Building Consensus Model on the Entire Data Set
158(1)
Loading Input Data
159(1)
Loading Selected Models and Choosing their Applicability Domain
160(1)
Reporting Predicted Values
160(1)
Analysis of the Fragments Contributions
161(1)
References
161(2)
10 Cross-Validation and the Variable Selection Bias
163(12)
Igor I. Baskin
Gilles Marcou
Dragos Horvath
Alexandre Varnek
Theoretical Background
163(2)
Step-by-Step Instructions
165(7)
Conclusion
172(1)
References
173(2)
11 Classification Models
175(18)
Igor I. Baskin
Gilles Marcou
Dragos Horvath
Alexandre Varnek
Theoretical Background
176(2)
Algorithms
178(2)
Step-by-Step Instructions
180(11)
Conclusion
191(1)
References
192(1)
12 Regression Models
193(16)
Igor I. Baskin
Gilles Marcou
Dragos Horvath
Alexandre Varnek
Theoretical Background
194(3)
Step-by-Step Instructions
197(10)
Conclusion
207(1)
References
208(1)
13 Benchmarking Machine-Learning Methods
209(14)
Igor I. Baskin
Gilles Marcou
Dragos Horvath
Alexandre Varnek
Theoretical Background
209(1)
Step-by-Step Instructions
210(12)
Conclusion
222(1)
References
222(1)
14 Compound Classification Using the scikit-learn Library
223(18)
Jenny Balfer
Jurgen Bajorath
Martin Vogt
Theoretical Background
224(1)
Algorithms
225(5)
Step-by-Step Instructions
230(8)
Naive Bayes
230(1)
Decision Tree
231(3)
Support Vector Machine
234(3)
Notes on Provided Code
237(1)
Conclusion
238(1)
References
239(2)
Part 5 Ensemble Modeling 241(38)
15 Bagging and Boosting of Classification Models
243(6)
Igor I. Baskin
Gilles Marcou
Dragos Horvath
Alexandre Varnek
Theoretical Background
243(1)
Algorithm
244(1)
Step by Step Instructions
245(2)
Conclusion
247(1)
References
247(2)
16 Bagging and Boosting of Regression Models
249(8)
Igor I. Baskin
Gilles Marcou
Dragos Horvath
Alexandre Varnek
Theoretical Background
249(1)
Algorithm
249(1)
Step-by-Step Instructions
250(5)
Conclusion
255(1)
References
255(2)
17 Instability of Interpretable Rules
257(6)
Igor I. Baskin
Gilles Marcou
Dragos Horvath
Alexandre Varnek
Theoretical Background
257(1)
Algorithm
258(1)
Step-by-Step Instructions
258(3)
Conclusion
261(1)
References
261(2)
18 Random Subspaces and Random Forest
263(8)
Igor I. Baskin
Gilles Marcou
Dragos Horvath
Alexandre Varnek
Theoretical Background
264(1)
Algorithm
264(1)
Step-by-Step Instructions
265(4)
Conclusion
269(1)
References
269(2)
19 Stacking
271(8)
Igor I. Baskin
Gilles Marcou
Dragos Horvath
Alexandre Varnek
Theoretical Background
271(1)
Algorithm
272(1)
Step-by-Step Instructions
273(4)
Conclusion
277(1)
References
278(1)
Part 6 3D Pharmacophore Modeling 279(32)
20 3D Pharmacophore Modeling Techniques in Computer-Aided Molecular Design Using LigandScout
281(30)
Thomas Seidel
Sharon D. Bryant
Gokhan Ibis
Giulio Poli
Thierry Langer
Introduction
281(2)
Theory: 3D Pharmacophores
283(1)
Representation of Pharmacophore Models
283(5)
Hydrogen-Bonding Interactions
285(1)
Hydrophobic Interactions
285(1)
Aromatic and Cation-pi Interactions
286(1)
Ionic Interactions
286(1)
Metal Complexation
286(1)
Ligand Shape Constraints
287(1)
Pharmacophore Modeling
288(1)
Manual Pharmacophore Construction
288(1)
Structure-Based Pharmacophore Models
289(1)
Ligand-Based Pharmacophore Models
289(2)
3D Pharmacophore-Based Virtual Screening
291(16)
3D Pharmacophore Creation
291(1)
Annotated Database Creation
291(1)
Virtual Screening-Database Searching
292(1)
Hit-List Analysis
292(2)
Tutorial: Creating 3D-Pharmacophore Models Using LigandScout
294(1)
Creating Structure-Based Pharmacophores From a Ligand-Protein Complex
294(2)
Description: Create a Structure-Based Pharmacophore Model
296(1)
Create a Shared Feature Pharmacophore Model From Multiple Ligand-Protein Complexes
296(1)
Description: Create a Shared Feature Pharmacophore and Align it to Ligands
297(1)
Create Ligand-Based Pharmacophore Models
298(2)
Description: Ligand-Based Pharmacophore Model Creation
300(1)
Tutorial: Pharmacophore-Based Virtual Screening Using LigandScout
301(1)
Virtual Screening, Model Editing, and Viewing Hits in the Target Active Site
301(1)
Description: Virtual Screening and Pharmacophore Model Editing
302(1)
Analyzing Screening Results with Respect to the Binding Site
303(2)
Description: Analyzing Hits in the Active Site Using LigandScout
305(1)
Parallel Virtual Screening of Multiple Databases Using LigandScout
305(1)
Virtual Screening in the Screening Perspective of LigandScout
306(1)
Description: Virtual Screening Using LigandScout
306(1)
Conclusions
307(1)
Acknowledgments
307(1)
References
307(4)
Part 7 The Protein 3D-Structures in Virtual Screening 311(42)
21 The Protein 3D-Structures in Virtual Screening
313(40)
Inna Slynko
Esther Kellenberger
Introduction
313(1)
Description of the Example Case
314(1)
Thrombin and Blood Coagulation
314(1)
Active Thrombin and Inactive Prothrombin
314(1)
Thrombin as a Drug Target
314(1)
Thrombin Three-Dimensional Structure: The 1OYT PDB File
315(1)
Modeling Suite
315(1)
Overall Description of the Input Data Available on the Editor Website
315(1)
Exercise 1: Protein Analysis and Preparation
316(14)
Step 1: Identification of Molecules Described in the 1OYT PDB File
316(4)
Step 2: Protein Quality Analysis of the Thrombin/Inhibitor PDB Complex Using MOE Geometry Utility
320(1)
Step 3: Preparation of the Protein for Drug Design Applications
321(4)
Step 4: Description of the Protein-Ligand Binding Mode
325(3)
Step 5: Detection of Protein Cavities
328(2)
Exercise 2: Retrospective Virtual Screening Using the Pharmacophore Approach
330(11)
Step 1: Description of the Test Library
332(1)
Step 2.1: Pharmacophore Design, Overview
333(1)
Step 2.2: Pharmacophore Design, Flexible Alignment of Three Thrombin Inhibitors
334(1)
Step 2.3: Pharmacophore Design, Query Generation
335(2)
Step 3: Pharmacophore Search
337(4)
Exercise 3: Retrospective Virtual Screening Using the Docking Approach
341(9)
Step 1: Description of the Test Library
341(1)
Step 2: Preparation of the Input
341(1)
Step 3: Re-Docking of the Crystallographic Ligand
341(4)
Step 4: Virtual Screening of a Database
345(5)
General Conclusion
350(1)
References
351(2)
Part 8 Protein-Ligand Docking 353(24)
22 Protein-Ligand Docking
355(22)
Inna Slynko
Didier Rognan
Esther Kellenberger
Introduction
355(1)
Description of the Example Case
356(1)
Methods
356(4)
Ligand Preparation
359(1)
Protein Preparation
359(1)
Docking Parameters
360(1)
Description of Input Data Available on the Editor Website
360(2)
Exercises
362(10)
A Quick Start with LeadIT
362(1)
Re-Docking of Tacrine into AChE
362(1)
Preparation of AChE From lACJ PDB File
362(1)
Docking of Neutral Tacrine, then of Positively Charged Tacrine
363(2)
Docking of Positively Charged Tacrine in AChE in Presence of Water
365(1)
Cross-Docking of Tacrine-Pyridone and Donepezil Into AChE
366(1)
Preparation of AChE From lACJ PDB File
366(1)
Cross-Docking of Tacrine-Pyridone Inhibitor and Donepezil in AChE in Presence of Water
367(3)
Re-Docking of Donepezil in AChE in Presence of Water
370(2)
General Conclusions
372(1)
Annex: Screen Captures of LeadIT Graphical Interface
372(3)
References
375(2)
Part 9 Pharmacophorical Profiling Using Shape Analysis 377(16)
23 Pharmacophorical Profiling Using Shape Analysis
379(14)
Jeremy Desaphy
Guillaume Bret
Inna Slynko
Didier Rognan
Esther Kellenberger
Introduction
379(1)
Description of the Example Case
380(1)
Aim and Context
380(1)
Description of the Searched Data Set
381(1)
Description of the Query
381(1)
Methods
381(4)
ROCS
381(3)
VolSite and Shaper
384(1)
Other Programs for Shape Comparison
384(1)
Description of Input Data Available on the Editor Website
385(2)
Exercises
387(3)
Preamble: Practical Considerations
387(1)
Ligand Shape Analysis
387(1)
What are ROCS Output Files?
387(1)
Binding Site Comparison
388(2)
Conclusions
390(1)
References
391(2)
Part 10 Algorithmic Chemoinformatics 393(56)
24 Algorithmic Chemoinformatics
395(54)
Martin Vogt
Antonio de la Vega de Leon
Jurgen Bajorath
Introduction
395(1)
Similarity Searching Using Data Fusion Techniques
396(1)
Introduction to Virtual Screening
396(1)
The Three Pillars of Virtual Screening
397(1)
Molecular Representation
397(1)
Similarity Function
397(1)
Search Strategy (Data Fusion)
397(1)
Fingerprints
397(5)
Count Fingerprints
397(2)
Fingerprint Representations
399(1)
Bit Strings
399(1)
Feature Lists
399(1)
Generation of Fingerprints
399(3)
Similarity Metrics
402(2)
Search Strategy
404(1)
Completed Virtual Screening Program
405(1)
Benchmarking VS Performance
406(2)
Scoring the Scorers
407(1)
How to Score
407(1)
Multiple Runs and Reproducibility
408(1)
Adjusting the VS Program for Benchmarking
408(6)
Analyzing Benchmark Results
410(4)
Conclusion
414(1)
Introduction to Chemoinformatics Toolkits
415(1)
Theoretical Background
415(1)
A Note on Graph Theory
416(1)
Basic Usage: Creating and Manipulating Molecules in RDKit
417(2)
Creation of Molecule Objects
417(1)
Molecule Methods
418(1)
Atom Methods
418(1)
Bond Methods
419(1)
An Example: Hill Notation for Molecules
419(1)
Canonical SMILES: The CANON Algorithm
420(1)
Theoretical Background
420(2)
Recap of SMILES Notation
420(1)
Canonical SMILES
421(1)
Building a SMILES String
422(3)
Canonicalization of SMILES
425(3)
The Initial Invariant
427(1)
The Iteration Step
428(3)
Summary
431(1)
Substructure Searching: The Ullmann Algorithm
432(1)
Theoretical Background
432(1)
Backtracking
433(3)
A Note on Atom Order
436(1)
The Ullmann Algorithm
436(5)
Sample Runs
440(1)
Summary
441(1)
Atom Environment Fingerprints
441(1)
Theoretical Background
441(2)
Implementation
443(4)
The Hashing Function
443(1)
The Initial Atom Invariant
444(1)
The Algorithm
444(3)
Summary
447(1)
References
447(2)
Index 449
Edited by

Alexandre Varnek, PhD, is a professor of theoretical chemistry at The University of Strasbourg, France where he heads the Laboratory of Chemoinformatics, and is Director of two MSc programs: Chemoinformatics and In Silico Drug Design. Professor Varnek's research focuses on developing new approaches and tools for virtual screening and "in silico" design of new compounds and chemical reactions.