Muutke küpsiste eelistusi

E-raamat: Twenty-First Century Quantum Mechanics: Hilbert Space to Quantum Computers: Mathematical Methods and Conceptual Foundations

  • Formaat: EPUB+DRM
  • Sari: UNITEXT for Physics
  • Ilmumisaeg: 27-Jun-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319587325
  • Formaat - EPUB+DRM
  • Hind: 49,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: UNITEXT for Physics
  • Ilmumisaeg: 27-Jun-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319587325

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is designed to make accessible to nonspecialists the still evolving concepts of quantum mechanics and the terminology in which these are expressed. The opening chapters summarize elementary concepts of twentieth century quantum mechanics and describe the mathematical methods employed in the field, with clear explanation of, for example, Hilbert space, complex variables, complex vector spaces and Dirac notation, and the Heisenberg uncertainty principle. After detailed discussion of the Schrödinger equation, subsequent chapters focus on isotropic vectors, used to construct spinors, and on conceptual problems associated with measurement, superposition, and decoherence in quantum systems. Here, due attention is paid to Bell’s inequality and the possible existence of hidden variables. Finally, progression toward quantum computation is examined in detail: if quantum computers can be made practicable, enormous enhancements in computing power, artificial intelligence, and secure communication will result. This book will be of interest to a wide readership seeking to understand modern quantum mechanics and its potential applications.

Arvustused

I agree with the authors that this is the excellent introductory book for non-specialists to quantum theory, though I would recommend it to all curious researchers whose perception of the world that surrounds us raises the questions of what, why and how is out there? (Eugene Kryachko, zbMATH 1377.81005, 2018)

1 Twentieth-Century Quantum Mechanics
1(42)
1.1 Quantum Theory and Atomic Structure
1(15)
1.1.1 Wave Nature of Light
2(2)
1.1.2 Corpuscular Nature of Light
4(4)
1.1.3 Corpuscular Nature of the Electron
8(1)
1.1.4 Wave Nature of the Electron
9(2)
1.1.5 Early Models of Atomic Structure
11(5)
1.2 Probability and Statistical Mechanics
16(16)
1.2.1 Introduction to Probability
17(3)
1.2.2 Statistical Mechanics
20(3)
1.2.3 Combinatorial Analysis
23(4)
1.2.4 Gaussian Integrals
27(2)
1.2.5 Maxwell-Boltzmann Distribution
29(3)
1.3 The Birth of Quantum Mechanics
32(11)
1.3.1 Hilbert Space
36(7)
2 Mathematical Methods in Quantum Mechanics
43(42)
2.1 Vector Analysis
43(6)
2.2 Matrices in Quantum Mechanics
49(9)
2.3 Quantum Mechanics in Toy Hilbert Space
58(5)
2.4 The Hilbert Space of Real Wavefunctions
63(7)
2.5 Complex Variables
70(5)
2.6 Complex Vector Spaces and Dirac Notation
75(4)
2.7 Coordinates and Momenta in Quantum Mechanics
79(4)
2.8 Heisenberg Uncertainty Principle
83(2)
3 The Schrodinger Equation
85(36)
3.1 Heuristic Derivation
85(3)
3.2 Particle in a Box
88(5)
3.3 The Harmonic Oscillator
93(3)
3.4 Angular Momentum
96(8)
3.4.1 Particle in a Ring
96(2)
3.4.2 Angular Momentum Operators
98(1)
3.4.3 Eigenvalues and Eigenfunctions
99(3)
3.4.4 Matrix Representations
102(1)
3.4.5 Electron Spin
102(1)
3.4.6 Abstract Theory of Angular Momentum
103(1)
3.5 The Hydrogen Atom
104(7)
3.5.1 Spherical Polar Coordinates
105(1)
3.5.2 Solution of the Schrodinger Equation
106(3)
3.5.3 Atomic Structure
109(2)
3.6 Time Evolution and Collapse of the Wavefunction
111(6)
3.6.1 The Evolution Operator
111(2)
3.6.2 Schrodinger and Heisenberg Pictures
113(2)
3.6.3 Collapse of the Wavefunction
115(2)
3.7 Philosophical Issues in Quantum Mechanics
117(4)
4 New Adventures: Isotropic Vectors, Rotations, Spinors, and Groups
121(32)
4.1 In variance and the Objective World
121(5)
4.2 Isotropic Vectors
126(1)
4.3 The Stereographic Projection
127(10)
4.3.1 Spinors in Spherical Coordinates
136(1)
4.4 Lie Groups: SO(3) and Vector Rotation, SU(2) and Spinor Rotation
137(16)
5 Quantum Entanglement and Bell's Theorem
153(42)
5.1 Product States in Hilbert Space
153(7)
5.2 Bohm's Version of the Einstein--Podolsky--Rosen Experiment
160(4)
5.3 Hidden Variables and Bell's Inequality
164(5)
5.4 Generalized Bell's Inequality
169(4)
5.5 Maxwell's Equations, the Nature of Light, and All That
173(4)
5.6 Light Polarization and the Spin of the Photon
177(2)
5.7 The Hilbert Space of One Photon and Aspect's Experiment
179(5)
5.7.1 Photon Polarization
179(3)
5.7.2 Aspect's Experiment
182(2)
5.8 Measurement and Decoherence
184(11)
6 Digital and Quantum Computers
195(63)
6.1 Binary Number System
195(1)
6.2 Boolean Algebra
196(5)
6.2.1 Venn Diagrams
198(3)
6.3 Classical Computers
201(6)
6.3.1 Logic Gates
201(4)
6.3.2 Binary Multiplication
205(2)
6.3.3 A Living Computer
207(1)
6.4 Quantum Computation
207(9)
6.4.1 Quantum Gates
210(6)
6.5 Deutsch's Algorithm
216(2)
6.6 Bell States
218(2)
6.7 Quantum Teleportation
220(2)
6.8 The Toffoli Logic Gate
222(2)
6.9 Quantum Fourier Transform
224(9)
6.9.1 Phase Estimation
230(3)
6.10 Some Results from Number Theory
233(21)
6.10.1 The Euclidean Algorithm
233(1)
6.10.2 Bezout's Lemma
234(1)
6.10.3 Modular Arithmetic
235(3)
6.10.4 Fermat's Little Theorem
238(2)
6.10.5 Chinese Remainder Theorem
240(2)
6.10.6 More Group Theory
242(2)
6.10.7 Factorization of Large Numbers
244(4)
6.10.8 Quantum Order Finding
248(4)
6.10.9 Continued Fractions
252(1)
6.10.10 Prime Number Theorem
253(1)
6.11 Quantum Cryptography
254(4)
6.11.1 RSA Cryptography
255(2)
6.11.2 Code Breaking
257(1)
Appendix 258(5)
Bibliography 263(4)
Index 267
Guido Fano graduated magna cum laude in Physics at the University of Rome in 1955 and earned university degrees in Theoretical Physics and Mathematical Methods of Physics. He taught at several universities, including Naples, Ferrara, Bologna, and Marseille, and progressed from being an assistant lecturer to senior lecturer and, finally, Professor of Mathematical Methods of Physics. Professor Fano is a specialist in the quantum many-body problem, with particular emphasis on the mathematical aspects. He is the author of about 60 publications in international journals as well as several textbooks. He is responsible for some particularly significant results concerning the existence problem for the time-dependent Hartree-Fock equations, the use of non-orthogonal orbitals in Quantum Chemistry, and the asymptotic behavior of the Taylor expansion coefficients of some sequences of polynomials.

  Seymour M. Blinder is Professor Emeritus of Chemistry and Physics at the University of Michigan, Ann Arbor, USA. He completed his PhD at Harvard University in 1958, under the supervision of Profs. W.E. Moffitt and J.H. Van Vleck (Nobel Prize in Physics, 1977). Professor Blinder has published more than 200 publications in both Theoretical Chemistry and Mathematical Physics. He was the first to derive a closed-form expression for the Feynman path-integral propagator for the Coulomb problem (the hydrogen atom). He is the author of several books and monographs. Professor Blinder is currently a telecommuting Senior Scientist for Wolfram Research (the developers of Mathematica and other scientific software).