Muutke küpsiste eelistusi

E-raamat: Ultimate Equilibrium of RC Structures Using Mini-Max Principle

  • Formaat: 133 pages
  • Ilmumisaeg: 01-Sep-2014
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781633213401
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 117,32 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 133 pages
  • Ilmumisaeg: 01-Sep-2014
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781633213401
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph analyses experimental and theoretical investigations in the field of reinforced concrete structures and elements from the viewpoint of a new mini-max principle and application of this principle for calculation of forces, strengths and critical buckling loads in RC shells, columns, plates, etc. The basis of the mini-max principle was developed during solving a problem of finding an RC shell load bearing capacity via a kinematic method. Forming the internal forces' fields at the plastic stage of the structure leads to a problem, related to interaction between the normal forces and bending moments, but at this stage the compressed shell section has an unknown eccentricity. Therefore an additional equation should be found for separating the above-mentioned forces. The following idea was proposed: the section compressed zone depth (static parameter) should be selected so that the maximum load bearing capacity of the structure is realized simultaneously with minimizing the external load the failure zone dimension (kinematic parameter). Development of this idea resulted in formulating the mini-max principle. The essence of this principle is that real load bearing capacity of the structure is calculated (without under- and over-estimation). With this aim it is proposed to use in the same calculation both extreme features of failure load. At the same time just one method is used (static or kinematic). Thus, the mini-max principle became a way for realizing the unity theorem of the limit equilibrium method, which joints the static and kinematic approaches. The mini-max principle enabled to solve some problems in load bearing capacity of structures that had no solutions or were solved approximately. Additionally, the principle was used for solving some new problems in calculation of RC shells.
Preface ix
Chapter 1 Introduction
1(6)
Chapter 2 Prerequisites of the Mini-Max Principle
7(34)
2.1 History of the Principle
7(4)
2.2 Combined Method
11(2)
2.3 Bearing Capacity of Continuous Beam at Complicated Loading Configuration
13(2)
2.4 Horn's Theorem and Its Review
15(3)
2.5 Solving Certain Problems Using Ultimate Equilibrium Method
18(14)
2.6 Convexity of a Region, Defined by Plasticity Equations for Compressed Elements
32(3)
2.7 Duality Theorems for Simple Plastic Failure
35(1)
2.8 Consequence of the Ultimate Equilibrium theorems
36(2)
2.9 Unity of Internal Forces' Fields at Realization of the Kinematic Failure Mechanism
38(1)
2.10 Concluding Remarks
39(2)
Chapter 3 Mini-Max Principle as a Tool for Calculation of RC Structural Bearing Capacity
41(32)
3.1 Two Groups of Parameters for Calculating the Structural Bearing Capacity
41(3)
3.2 Mini-Max Principle and an Alternative Maxi-Min Principle
44(4)
3.3 Presenting the Two-Parametric Structural Bearing Capacity Function As a Functional
48(2)
3.4 Some Definitions from the Theory of Sets
50(1)
3.5 The Basic Concepts in the Theory of Antagonistic Games with a Zero Sum
51(3)
3.6 Two-Parametric Function of Structural Bearing Capacity in Games' Theory Terms
54(16)
3.8 Difference between Mini-Max Principle and Optimization Problems
70(3)
Chapter 4 Using the Mini-Max Principle in Calculating the Bearing Capacity of RC Structures
73(40)
4.1 Interaction between the Internal Forces in Thin-Walled Elasto-Plastic Shells
73(3)
4.2 Calculating the Bearing Capacity of an RC Shell Using a Five Disks Failure Scheme
76(3)
4.3 Calculating the Bearing Capacity of a Ribbed RC Shell Using a Five Disks Failure Scheme
79(2)
4.4 Calculating the Bearing Capacity of a Ribbed RC Shell with Variable Ribs' Height Using a Five Disks Failure Scheme
81(4)
4.5 Calculating Bearing Capacity of an RC Tube
85(2)
4.6 Calculating the Bearing Capacity of a Polygonal RC Plate Under Concentrated Load
87(4)
4.7 Calculating the Bearing Capacity of a Ferro-Cement Shell Panel
91(3)
4.8 Calculating the Bearing Capacity of a Pre-Cast RC Shell Element
94(2)
4.9 Critical Impulse on Statically Loaded Shell
96(5)
4.10 Precising the Bearing Capacity of RC Dome under Concentrated Loading
101(3)
4.11 Calculating Parameters of Drift Shapes in Statically Pre-Loaded RC Shells under Seismic Excitation
104(4)
4.12 Using the Mini-Max Principle for Verifying Existing Design Approaches for RC Shells
108(1)
4.13 Approximate Estimation of the Compressed Concrete Zone Depth in RC Shell Section
109(2)
4.14 Maximization by Section Compressed Zone Depth As Additional Condition for Design of Compressed RC Elements with Double Reinforcement
111(2)
Appendices
113(4)
Appendix 1 Variation Principles, Forming a Basis for the Mini-Max Principle
113(1)
Appendix 2 The Only Possible Rigid Body Stress Condition As a Basis for the Mini-Max Principle
114(3)
References 117(4)
Authors' Contact Information 121(2)
Index 123