Muutke küpsiste eelistusi

E-raamat: Ultra-high-q Optical Microcavities

Edited by (Univ Of Sci & Tech Of China, China), Edited by (Peking Univ, China), Edited by (Peking Univ, China), Edited by (Washington Univ, Usa)
  • Formaat: 412 pages
  • Ilmumisaeg: 29-Oct-2020
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814566087
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 122,85 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 412 pages
  • Ilmumisaeg: 29-Oct-2020
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814566087
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Confinement and manipulation of photons using microcavities have triggered intense research interest in both pure and applied physics for more than a decade. Prominent examples are whispering gallery microcavities that can confine photons by means of continuous total internal reflection along a curved and smooth surface. The long photon lifetime, strong field confinement, and in-plane emission characteristics make them promising candidates for enhancing light-matter interactions on a chip. In this book, we introduce different ultra-high-Q whispering gallery microcavities, and focus on their applications in enhancing light-matter interactions, such as ultra-low-threshold microlasing, highly sensitive optical biosensing, nonlinear optics, cavity quantum electrodynamics, and cavity optomechanics.
1 High-Q Lithium Niobate Microcavities and Their Applications 1(36)
Cheng Wang
Mian Zhang
Marko Lonear
1.1 Introduction
1(2)
1.2 Design principles of lithium niobate devices
3(1)
1.3 Lithium niobate on insulator (LNOI)
4(3)
1.4 Microcavity fabrication in LN
7(7)
1.5 Characterization of LN microcavities
14(3)
1.6 Applications of LN microcavities
17(11)
1.7 Outlook
28(1)
References
29(8)
2 Second-order Nonlinear Effects and Photon Scattering in Ultra-high-Q Crystalline WGMRs 37(42)
Guoping Lin
Yanne K. Chembo
2.1 Introduction
37(2)
2.2 Fabrication of ultra-high-Q crystalline WGMRs
39(6)
2.3 Second-order nonlinear phenomena in crystalline WGMRs
45(11)
2.4 Nonlinear photon scattering in crystalline WGMRs
56(13)
2.5 Conclusions
69(1)
Acknowledgment
69(1)
References
69(10)
3 Dissipated Kerr Solitons in Optical Microresonators 79(46)
Xu Yi
Kerry Vahala
3.1 Introduction
79(2)
3.2 Theory
81(12)
3.3 Experiments
93(8)
3.4 Raman augmented solitons
101(8)
3.5 Coherent sampling of soliton dynamics
109(7)
3.6 Soliton microcomb applications and outlooks
116(1)
References
117(8)
4 Non-reciprocity in Optomechanical Resonators 125(34)
Zhen Shen
Yuan Chen
Chang-Ling Zou
Chun-Hua Dong
4.1 Introduction
125(1)
4.2 Model (Theory)
126(8)
4.3 Experimental realization of optomechanically induced non-reciprocity
134(6)
4.4 Non-reciprocal photonics devices
140(9)
4.5 Optomechanical dark mode and mode conversion
149(3)
4.6 Conclusion and perspectives
152(1)
Acknowledgment
153(1)
References
153(6)
5 Cavity Quantum Electrodynamics and Chiral Quantum Optics 159(44)
Michael Scheucher
Jurgen Volz
Arno Rauschenbeutel
5.1 Introduction
159(1)
5.2 Spin-momentum locking in WGM resonators
160(9)
5.3 Coupling between a single atom and WGMs
169(11)
5.4 Chiral waveguides
180(11)
5.5 Applications of chiral light-matter interaction
191(6)
References
197(6)
6 Organic Self-assembled Microcavities and Microlasers 203(30)
Chuang Zhang
Yong Sheng Zhao
6.1 Introduction
203(3)
6.2 A brief history of organic microlasers
206(3)
6.3 Controlled molecular assembly for microcavities
209(7)
6.4 Excited-state processes in organic microcavities for organic microlasers
216(6)
6.5 Coupled organic microcavities toward integrated photonic applications
222(5)
6.6 Summary and outlook
227(2)
References
229(4)
7 Microdisk Lasers: Fundamental Physics and Practical Applications 233(36)
Qinghai Song
7.1 Introduction
233(2)
7.2 Resonances and mode control in microcavities
235(7)
7.3 Microdisk lasers around the exceptional point
242(19)
7.4 Conclusion and perspective
261(2)
References
263(6)
8 Non-Hermitian Physics and Exceptional Points in High-quality Optical Microresonators 269(46)
Weijian Chen
Changqing Wang
Bo Peng
Lan Yang
8.1 Introduction
269(2)
8.2 Non-Hermitian photonic molecule
271(17)
8.3 Non-Hermitian microresonator with scatterers-induced asymmetric backscattering
288(5)
8.4 Non-Hermitian microresonator with index modulation
293(5)
8.5 Non-Hermitian cavity optomechanics
298(7)
8.6 Conclusion and outlook
305(1)
References
306(9)
9 Resonance-assisted Tunneling in Weakly Deformed Microdisk Cavities 315(44)
Julius Kullig
Chang-Hwan Yi
Jan Wiersig
9.1 Introduction
315(2)
9.2 Optical modes and mode equation
317(2)
9.3 Ray dynamics in microdisk cavities
319(10)
9.4 Formation of modes in weakly deformed cavities due to resonance-assisted tunneling
329(12)
9.5 Frequency splitting of even and odd parity modes due to resonance-assisted tunneling
341(7)
9.6 Exceptional points in weakly deformed microdisks
348(5)
9.7 Summary
353(1)
References
354(5)
10 Ultra-high-Q Asymmetric Microcavity 359(42)
Yu-Zhong Gu
Li-Kun Chen
Qi-Tao Cao
Qihuang Gong
Yun-Feng Xiao
10.1 Introduction
359(2)
10.2 Ray dynamics
361(10)
10.3 Directional emission
371(6)
10.4 Free-space coupling
377(8)
10.5 Applications of ultra-high-Q asymmetric microcavities
385(8)
10.6 Summary
393(1)
References
394(7)
Index 401