Muutke küpsiste eelistusi

E-raamat: Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book focuses on increasing the energy-efficiency of electronic devices so that portable applications can have a longer stand-alone time on the same battery. The authors explain the energy-efficiency benefits that ultra-low-voltage circuits provide and provide answers to tackle the challenges which ultra-low-voltage operation poses. An innovative design methodology is presented, verified, and validated by four prototypes in advanced CMOS technologies. These prototypes are shown to achieve high energy-efficiency through their successful functionality at ultra-low supply voltages.
1 Introduction
1(18)
1.1 Supply Voltage Reduction: A Brief History
1(2)
1.2 Reducing the Energy Consumption
3(5)
1.2.1 Definitions
4(1)
1.2.2 Minimizing the Energy Consumption
5(2)
1.2.3 Energy-Delay Product
7(1)
1.3 Ultra-Low-Voltage Digital Design
8(2)
1.4 Applications
10(1)
1.5 Current State-of-the-Art in Literature
10(5)
1.6 Outline of This Work
15(4)
References
17(2)
2 Sub-Threshold Operation: Theory and Challenges
19(28)
2.1 Transistor Operation
20(9)
2.1.1 Different Operating Regions
21(3)
2.1.2 Threshold Voltage
24(4)
2.1.3 Region of Interest
28(1)
2.2 Challenges of Sub-Threshold Operation
29(6)
2.2.1 Performance
29(1)
2.2.2 Leakage
30(1)
2.2.3 Variability
31(3)
2.2.4 Temperature
34(1)
2.3 Technology Scaling
35(7)
2.3.1 Fundamental Limits
36(4)
2.3.2 Impact of Scaling
40(1)
2.3.3 Model Accuracy
41(1)
2.4 Transistor Type
42(1)
2.5 Conclusion
43(4)
References
43(4)
3 Gate-Level Building Blocks
47(38)
3.1 Circuit Topology Comparison
48(27)
3.1.1 Standard CMOS Logic
48(12)
3.1.2 Pseudo-nMOS Logic
60(2)
3.1.3 Pass Transistor Logic
62(2)
3.1.4 Transmission Gate Logic
64(7)
3.1.5 Other Topologies
71(4)
3.2 Chosen Circuit Topologies
75(2)
3.2.1 Logic Gates
75(1)
3.2.2 Inverter
76(1)
3.3 Memory Elements
77(3)
3.3.1 Latch
78(2)
3.3.2 Flip-Flop
80(1)
3.4 Sizing in Different Prototypes
80(1)
3.5 Conclusion
80(5)
References
81(4)
4 Architectural Design
85(28)
4.1 Theoretical Considerations
86(6)
4.1.1 Energy Ratio
87(1)
4.1.2 Total Energy Consumption
88(4)
4.2 Cascading Logic Gates
92(6)
4.2.1 Concept
92(2)
4.2.2 Trade-Off
94(2)
4.2.3 Differential TG Logic
96(2)
4.2.4 Realization
98(1)
4.3 Pipelining
98(9)
4.3.1 Concept
98(1)
4.3.2 Benefits and Drawbacks
99(1)
4.3.3 Pipelining Schemes
100(5)
4.3.4 Design Considerations
105(2)
4.4 Design Methodology
107(2)
4.4.1 Design
107(1)
4.4.2 Layout
108(1)
4.5 VO Circuits
109(2)
4.6 Conclusion
111(2)
References
112(1)
5 Datapath Blocks
113(28)
5.1 Adder
114(6)
5.1.1 Proof of Concept
114(1)
5.1.2 Architecture
114(1)
5.1.3 Ultra-Low-Voltage Design
114(3)
5.1.4 Measurement Results
117(2)
5.1.5 State-of-the-Art Comparison
119(1)
5.1.6 Conclusion
120(1)
5.2 Multiply-Accumulate Unit
120(18)
5.2.1 Proof of Concept
120(1)
5.2.2 Architecture
121(2)
5.2.3 Ultra-Low-Voltage Design
123(7)
5.2.4 Measurement Results
130(6)
5.2.5 State-of-the-Art Comparison
136(1)
5.2.6 Conclusion
137(1)
5.3 Conclusion
138(3)
References
138(3)
6 JPEG Encoder
141(30)
6.1 Proof of Concept
142(1)
6.2 JPEG Encoding Algorithm
142(2)
6.3 Ultra-Low-Voltage Design
144(1)
6.4 Implementation
144(15)
6.4.1 Timing
144(2)
6.4.2 2D-DCT
146(2)
6.4.3 Quantization
148(1)
6.4.4 Zigzag Matrix and Huffman Encoder
149(7)
6.4.5 Lookup Tables
156(3)
6.5 Measurement Results
159(2)
6.6 State-of-the-Art Comparison
161(4)
6.7 Lookup Table Improvements
165(4)
6.8 Conclusion
169(2)
References
169(2)
7 Conclusion
171(10)
7.1 General Conclusions
171(3)
7.2 State-of-the-Art Comparison
174(3)
7.3 Main Contributions
177(1)
7.4 Suggestions for Future Work
178(3)
7.4.1 Energy-Efficient SRAM
179(1)
7.4.2 Other Technologies
179(1)
7.4.3 Standard Digital Design Flow
179(1)
7.4.4 Inter-Die Variations
180(1)
7.4.5 Temperature-Dependence
180(1)
7.4.6 Efficient DC-DC Converter
180(1)
Reference
180(1)
A Current State-of-the-Art in Literature
181(8)
References
184(5)
Index 189
The scientific interest of W. Dehaene is situated in the general domain of micro-electronics. The focus is on circuits and architectures. In the beginning the research concentrated on analog circuits, mainly during the PhD work. During the industrial part of the career at Alcatel Microelectronics this was expanded towards architectural and system design. The circuit level however always was prominently present. When research goes into systems and architecture the extension towards digital hardware and even software becomes a relatively small step. When going back to the academic world, the focus is again on circuit level but now for digital systems. A lot of the problems in digital circuit design are of an analog nature: e.g. the combination of low power and high speed. A knowledge that crosses both the analog and digital domain is here thus essential. Summarizing the research interest in a one-liner gives: mixed analog digital systems with a focus on circuit-architecture level.