Muutke küpsiste eelistusi

E-raamat: Ultrafast Optics

(Purdue University)
  • Formaat - EPUB+DRM
  • Hind: 172,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A comprehensive treatment of ultrafast optics

This book fills the need for a thorough and detailed account of ultrafast optics. Written by one of the most preeminent researchers in the field, it sheds new light on technology that has already had a revolutionary impact on precision frequency metrology, high-speed electrical testing, biomedical imaging, and in revealing the initial steps in chemical reactions.

Ultrafast Optics begins with a summary of ultrashort laser pulses and their practical applications in a range of real-world settings. Next, it reviews important background material, including an introduction to Fourier series and Fourier transforms, and goes on to cover:

  • Principles of mode-locking
  • Ultrafast pulse measurement methods
  • Dispersion and dispersion compensation
  • Ultrafast nonlinear optics: second order
  • Ultrafast nonlinear optics: third order
  • Mode-locking: selected advanced topics
  • Manipulation of ultrashort pulses
  • Ultrafast time-resolved spectroscopy
  • Terahertz time-domain electromagnetics

Professor Weiner's expertise and cutting-edge research result in a book that is destined to become a seminal text for engineers, researchers, and graduate students alike.

Preface xiii
Introduction and Review
1(31)
Introduction to Ultrashort Laser Pulses
1(3)
Brief Review of Electromagnetics
4(6)
Maxwell's Equations
4(2)
The Wave Equation and Plane Waves
6(2)
Poynting's Vector and Power Flow
8(2)
Review of Laser Essentials
10(12)
Steady-State Laser Operation
10(5)
Gain and Gain Saturation in Four-Level Atoms
15(2)
Gaussian Beams and Transverse Laser Modes
17(5)
Introduction to Ultrashort Pulse Generation Through Mode-Locking
22(3)
Fourier Series and Fourier Transforms
25(7)
Analytical Aspects
25(3)
Computational Aspects
28(2)
Problems
30(2)
Principles of Mode-Locking
32(53)
Processes Involved in Mode-Locking
32(1)
Active Mode-Locking
33(11)
Time-Domain Treatment
34(6)
Frequency-Domain Treatment
40(3)
Variations of Active Mode-Locking
43(1)
Passive Mode-Locking Using Saturable Absorbers
44(13)
Saturation Model
47(3)
Slow Saturable Absorber Mode-Locking
50(4)
Fast Saturable Absorber Mode-Locking
54(3)
Solid-State Laser Mode-Locking Using the Optical Kerr Effect
57(28)
Nonlinear Refractive Index Changes
57(1)
Self-Amplitude Modulation, Self-Phase Modulation, and Group Velocity Dispersion
58(2)
Additive Pulse Mode-Locking
60(4)
Kerr Lens Mode-Locking
64(11)
Mode-Locking Solutions
75(6)
Initiation of Mode-Locking
81(2)
Problems
83(2)
Ultrafast-pulse Measurement Methods
85(62)
Terminology and Definitions
85(3)
Electric Field Autocorrelation Measurements and the Power Spectrum
88(3)
Electric Field Cross-Correlation Measurements and Spectral Interferometry
91(8)
Electric Field Cross-Correlation
92(1)
Spectral Interferometry
93(3)
Application: Optical Coherence Tomography
96(3)
Intensity Correlation Measurements
99(13)
Correlation Measurements Using Second-Harmonic Generation
99(9)
Experimental Procedures
108(2)
Correlation Measurements Using Two-Photon absorption
110(1)
Higher-Order Correlation Techniques
111(1)
Chirped Pulses and Measurements in the Time-Frequency Domain
112(6)
Frequency-Resolved Optical Gating
118(12)
Polarization-Gating FROG
119(3)
Self-Diffraction FROG
122(2)
Second-Harmonic-Generation FROG
124(1)
Frequency-Resolved Optical Gating Using Temporal Phase Modulation
125(1)
Signal Recovery from FROG Traces
126(4)
Pulse Measurements Based on Frequency Filtering
130(5)
Single-Slit Approaches
131(3)
Double-Slit Approach
134(1)
Self-Referencing Interferometry
135(4)
Time-Domain Interferometry of Chirped Pulses
135(2)
Self-Referencing Spectral Interferometry
137(2)
Characterization of Noise and Jitter
139(8)
Problems
144(3)
Dispersion and Dispersion Compensation
147(51)
Group Velocity Dispersion
147(8)
Group Velocity Definition and General Dispersion Relations
147(4)
General Aspects of Material Dispersion
151(4)
Temporal Dispersion Based on Angular Dispersion
155(6)
Relation Between Angular and Temporal Dispersion
155(4)
Angular Dispersion and Tilted Intensity Fronts
159(2)
Dispersion of Grating Pairs
161(5)
Dispersion of Prism Pairs
166(7)
Dispersive Properties of Lenses
173(4)
Dispersion of Mirror Structures
177(9)
The Gires-Tournois Interferometer
178(2)
Quarter-Wave Stack High Reflectors
180(2)
Chirped Mirrors
182(4)
Measurements of Group Velocity Dispersion
186(5)
Interferometric Methods
187(3)
Frequency-Domain Intracavity Dispersion Measurements
190(1)
Appendix
191(7)
Frequency-Dependent Phase Due to Propagation Through a Slab: Alternative Derivation
191(1)
Impedance Method for Analysis of Dielectric Mirror Stacks
192(3)
Problems
195(3)
Ultrafast Nonlinear Optics: Second Order
198(60)
Introduction to Nonlinear Optics
198(3)
The Forced Wave Equation
201(3)
Frequency-Domain Formulation
202(1)
Time-Domain Formulation
203(1)
Summary of Continuous-Wave Second-Harmonic Generation
204(16)
Effect of Phase Matching
207(2)
Phase Matching in Birefringent Media
209(6)
Focusing Effects in Continuous-Wave SHG
215(5)
Second-Harmonic Generation with Pulses
220(17)
SHG in the Quasi-Continuous-Wave Limit
220(1)
Ultrashort-Pulse SHG
221(7)
Quasi-Phase Matching
228(5)
Effect of Group Velocity Walk-off on SHG-Based Pulse Measurements
233(4)
Three-Wave Interactions
237(16)
Sum Frequency Generation
240(4)
Difference Frequency Generation
244(1)
Optical Parametric Amplification
245(8)
Appendix
253(5)
Spatial Walk-off and Pulse Fronts in Anisotropic Media
253(1)
Velocity Matching in Broadband Noncollinear Three-Wave Mixing
254(2)
Problems
256(2)
Ultrafast Nonlinear Optics: Third Order
258(58)
Propagation Equation for Nonlinear Refractive Index Media
258(8)
Plane Waves in Uniform Media
260(1)
Nonlinear Propagation in Waveguides
261(3)
Optical Fiber Types
264(2)
The Nonlinear Schrodinger Equation
266(4)
Self-Phase Modulation
270(6)
Dispersionless Self-Phase Modulation
270(3)
Dispersionless Self-Phase Modulation with Loss
273(1)
Self-Phase Modulation with Normal Dispersion
274(1)
Cross-Phase Modulation
275(1)
Pulse Compression
276(7)
Modulational Instability
283(3)
Solitons
286(5)
Higher-Order Propagation Effects
291(19)
Nonlinear Envelope Equation in Uniform Media
292(3)
Nonlinear Envelope Equation in Waveguides
295(1)
Delayed Nonlinear Response and the Raman Effect
296(10)
Self-Steepening
306(2)
Space-Time Focusing
308(2)
Continuum Generation
310(6)
Problems
313(3)
Mode-Locking: Selected Advanced Topics
316(46)
Soliton Fiber Lasers: Artificial Fast Saturable Absorbers
316(12)
The Figure-Eight Laser
317(5)
Energy Quantization
322(2)
Soliton Sidebands
324(4)
Soliton Mode-Locking: Active Modulation and Slow Saturable Absorbers
328(9)
Harmonically Mode-Locked Soliton Fiber Lasers
328(2)
The Net Gain Window in Soliton Mode-Locking
330(7)
Stretched Pulse Mode-Locking
337(7)
Stretched Pulse Mode-Locked Fiber Laser
337(3)
Dispersion-Managed Solitons
340(2)
Theoretical Issues
342(2)
Mode-Locked Lasers in the Few-Cycle Regime
344(3)
Mode-Locked Frequency Combs
347(15)
Comb Basics
347(3)
Measurement Techniques
350(4)
Stabilization of Frequency Combs
354(2)
Applications
356(4)
Problems
360(2)
Manipulation of Ultrashort Pulses
362(60)
Fourier Transform Pulse Shaping
362(24)
Examples of Pulse Shaping Using Fixed Masks
364(5)
Programmable Pulse Shaping
369(7)
Pulse-Shaping Theory
376(10)
Other Pulse-Shaping Techniques
386(8)
Direct Space-to-Time Pulse Shaping
386(4)
Acousto-optic Dispersive Filters
390(4)
Chirp Processing and Time Lenses
394(11)
Space-Time Duality
394(3)
Chirp Processing
397(2)
Time Lens Processing
399(6)
Ultrashort-Pulse Amplification
405(11)
Amplification Basics
406(5)
Special Issues in Femtosecond Amplifiers
411(5)
Appendix
416(6)
Fresnel Diffraction and Fourier Transform Property of a Lens
416(2)
Wave Optics Model of a Grating
418(2)
Problems
420(2)
Ultrafast Time-Resolved Spectroscopy
422(85)
Introduction to Ultrafast Spectroscopy
422(4)
Degenerate Pump-Probe Transmission Measurements
426(13)
Co-polarized Fields: Scalar Treatment
426(5)
Vector Fields and Orientational Effects
431(8)
Nondegenerate and Spectrally Resolved Pump-Probe: Case Studies
439(12)
Femtosecond Pump-Probe Studies of Dye Molecules
440(4)
Femtosecond Pump-Probe Studies of GaAs
444(7)
Basic Quantum Mechanics for Coherent Short-Pulse Spectroscopies
451(9)
Some Basic Quantum Mechanics
451(5)
The Density Matrix
456(4)
Wave Packets
460(9)
Example: Semiconductor Quantum Wells
461(1)
Molecules
462(7)
Dephasing Phenomena
469(30)
Linear Spectroscopies
469(6)
Models of Dephasing
475(6)
Measurement of Dephasing Using Transient Gratings
481(13)
Two-Dimensional Spectroscopy
494(5)
Impulsive Stimulated Raman Scattering
499(8)
Problems
505(2)
Terahertz Time-Domain Electromagnetics
507(26)
Ultrafast Electromagnetics: Transmission Lines
507(9)
Photoconductive Generation and Sampling
507(6)
Electro-optic Sampling
513(3)
Ultrafast Electromagnetics: Terahertz Beams
516(17)
Generation and Measurement of Terahertz Pulses
517(10)
Terahertz Spectroscopy and Imaging
527(4)
Problems
531(2)
References 533(30)
Index 563
Andrew M. Weiner is the Scifres Family Distinguished Professor of Electrical and Computer Engineering at Purdue University. Professor Weiner is the coeditor of two conference proceedings and has published six book chapters, over 200 journal articles, and over 350 conference papers. His research focuses on ultrafast optical signal processing, high-speed optical communications, and ultrabroadband radio-frequency photonics. He is especially well known for pioneering the field of femtosecond pulse shaping, for which he has received numerous awards.