Muutke küpsiste eelistusi

E-raamat: Uncertainty and Graphing in Discovery Work: Implications for and Applications in STEM Education

  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Aug-2014
  • Kirjastus: Springer
  • Keel: eng
  • ISBN-13: 9789400770096
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Aug-2014
  • Kirjastus: Springer
  • Keel: eng
  • ISBN-13: 9789400770096
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book deals with uncertainty and graphing in scientific discovery work from a social practice perspective. It is based on a 5-year ethnographic study in an advanced experimental biology laboratory. The book shows how, in discovery work where scientists do not initially know what to make of graphs, there is a great deal of uncertainty and scientists struggle in trying to make sense of what to make of graphs. Contrary to the belief that scientists have no problem “interpreting” graphs, the chapters in this book make clear that uncertainty about their research object is tied to uncertainty of the graphs. It may take scientists several years of struggle in their workplace before they find out just what their graphs are evidence of. Graphs turn out to stand to the entire research in a part/whole relation, where scientists not only need to be highly familiar with the context from which their data are extracted but also with the entire process by means of which the natural world comes to be transformed and represented in the graph. This has considerable implications for science, technology, engineering, and mathematics education at the secondary and tertiary level, as well as in vocational training. This book discusses and elaborates these implications.



This book examines graphs and graphing in scientific discovery work, from the initial study to the publication of a journal article. It shows that the uncertainty of scientists about their research object is tied to uncertainty of the graphs being used.
Part I Introduction
1 Toward a Dynamic Theory of Graphing
3(46)
Expertise and the Work of Graphing in Uncertainty
7(6)
Science Inquiry and Graphing
13(3)
Toward a Dynamic Theory
16(11)
Units of Analysis and Units of Thought (Categories)
16(5)
Research as Cultural-Historical Activity
21(6)
References
27(22)
Part II Graphing in a Discovery Science
2 Radical Uncertainty in/of the Discovery Sciences
49(20)
On Being in the Dark
50(2)
Groping in the Dark
52(12)
Breakdown, Darkness
53(1)
A Flash (of Light, of Wit, of Hope)
54(2)
Groping About
56(4)
First Clearing, First Object
60(3)
Cleared, Cleared Up, and Cleared Away
63(1)
Everydayness of Uncertainty
64(3)
References
67(2)
3 Uncertainties in/of Data Generation
69(34)
Finding the Ideal Graph
71(4)
Seeing Through the Clutter
75(4)
Sources of Uncertainty
79(9)
Practical Uncertainty
79(2)
Material Uncertainty
81(3)
Uncertainty of Tools and Instruments
84(2)
From Scientific Action to Scientific Fact
86(2)
When Is Data Legitimately Excluded?
88(9)
Knowledgeability and Familiarity
97(2)
References
99(4)
4 Coping with Graphical Variability
103(46)
Checking Criteria Controlling Variability
108(3)
Preconceived Notions
111(4)
Tentative Identification of Patterns
115(7)
Testing the Preconceived Notion
116(2)
Articulating Problems During Data Collection
118(4)
Excluding Recalcitrant Data
122(4)
Testing Hypothetical Exclusion of Data Point
126(7)
Getting a Grip on Difficult Data
127(2)
Tentative Identification of a Pattern
129(2)
Gestures Foster Seeing
131(2)
Delimiting the Data by Sets
133(4)
Using Graphs to Delimit Errors in Graphs
137(5)
A Shot in the Dark
138(2)
Identification of New Features
140(2)
Grasping the Variation of Variation
142(3)
Consequences for the Control of Variance
145(2)
References
147(2)
5 Undoing Decontextualization
149(30)
On Being Familiar with Black Boxes
150(4)
The Work of Familiarity with the Data-at-Hand
154(11)
First Impressions and Acceptance
155(2)
Putting Data in the Context of Other Data
157(3)
Uncertainty — Again
160(1)
Postponement
161(2)
From Decontextualization to Recontextualization
163(2)
Unpremeditated Reconstruction of Context
165(11)
An Ensemble of Environmental Factors
166(4)
How Old Are Hatchery-Released Fish?
170(4)
Undoing the Weight-Porphyropsin Link?
174(2)
The Past Regained
176(1)
References
177(2)
6 On Contradictions in Data Interpretation
179(34)
On Logical and Inner Contradictions
180(6)
Contradictions in the Modeling of Data
186(12)
A Contradiction That Is Not
187(2)
Noting Something Without Seeing the Contradiction
189(2)
Not Hearing Contradictory Evidence
191(4)
Confusion Is Not Contradiction
195(3)
Contradictions Undetected in Transaction Sequences
198(8)
Ambient Temperature
201(3)
Contradictions to the End
204(2)
Contradictions in and of Scientific Research
206(5)
References
211(2)
7 A Scientific Revolution That Was Not
213(50)
Conceptual Change
216(4)
The Big Historical Picture
220(4)
Beginning Representation
224(2)
Early Explanations and the Need for Context
226(9)
First Explanations
226(2)
An Alternative Hypothesis Emerges But Is Not Retained
228(3)
Take-Up of an Earlier Hypothesis
231(2)
Discourse in Transition
233(2)
Fitting the Data to the Dogma
235(3)
First Awareness of the Data as a Challenge to the Dogma
238(6)
From Dogma to Complete Speculation
244(5)
Consolidation, Posters, and Publications
249(5)
Toward a Biologically Relevant Explanation
254(3)
Confirmation Bias, Trends and Extrapolation
257(4)
References
261(2)
8 Some Lessons from Discovery Science
263(38)
Induction Versus Abduction
265(4)
Conceptual Change
269(2)
On the Salience of "Facts"
271(5)
Uncertainty
276(2)
Contradictions in Scientific Research
278(2)
Control Over the (Not-) Becoming of Data
280(3)
Graphs in Discovery Work
283(6)
Communication at Work
289(5)
References
294(7)
Part III Retheorizing Graphing
9 Graphing-in-the-Making
301(34)
Toward a Dialectical Theory of Learning and Change
302(9)
Characterizing Flow and Change
303(4)
Evolution of Theory and Language: A Dialectical Approach
307(4)
Cultural-Historical Activity Theory: A Dialectical Perspective
311(3)
A Dynamic, Cultural-historical (Dialectical) Perspective
314(12)
From Initial (Ephemeral) Idea to Scientific Research Outcome
314(6)
Microconstitution of Graphing
320(4)
A Day's Work in the Laboratory
324(2)
Through the Lens of the Unfinished
326(5)
References
331(4)
10 Graphing In, For, and As Societal Relation
335(30)
Societal Nature of Psychological Functions
336(4)
Societal Relation in the Laboratory
340(4)
The Multiple Functions of Graphs
344(9)
Exchange and Circulation
353(1)
References
354(11)
Part IV Uncertainty and Graphing in STEM Education
11 Uncertainty, Inquiry, Bricolage
365(32)
Uncertainty — Literacy, Graphicacy, Contradictions
367(8)
Uncertainty and Literacy
367(3)
Uncertainty and Graphicacy
370(3)
Uncertainty and Logical Contradictions
373(2)
What We Might Want to Foster in Student Inquiry
375(11)
Laboratory Communication
375(4)
Temporality of Scientific Praxis
379(3)
Learning Is Groping in the Dark
382(2)
On Learning About the Nature of STEM
384(2)
Bricoleur, Bricolage
386(7)
References
393(4)
12 Data and Graphing in STEM Education
397(28)
Unpacking Black Boxes
398(6)
Two Studies on Data Generation and Interpretation in the Face of Uncertainty
404(9)
A Focus on Context
405(6)
Supporting Students' Learning About Data Creation
411(2)
Integrating Across STEM Domains
413(8)
References
421(4)
Part V Epilogue
13 Discovery Science and Authentic Learning
425(20)
Learning as Participation in a Discovery Science
426(9)
Exemplary Learning Exemplifies
428(5)
Authentic Inquiry and Flow
433(2)
Notes from One Night's Inquiry
435(4)
Reflections on Authentic Learning
439(4)
References
443(2)
Appendix: Transcription Conventions 445(2)
Index 447