Muutke küpsiste eelistusi

E-raamat: Undergraduate Convexity: Problems And Solutions

(Aarhus Univ, Denmark), (Aarhus Univ, Denmark)
  • Formaat: 196 pages
  • Ilmumisaeg: 08-Sep-2016
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813143661
  • Formaat - PDF+DRM
  • Hind: 29,25 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 196 pages
  • Ilmumisaeg: 08-Sep-2016
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813143661

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This solutions manual thoroughly goes through the exercises found in Undergraduate Convexity: From Fourier and Motzkin to Kuhn and Tucker. Several solutions are accompanied by detailed illustrations and intuitive explanations. This book will pave the way for students to easily grasp the multitude of solution methods and aspects of convex sets and convex functions. Companion Textbook here
Preface v
Acknowledgments vii
1 Fourier-Motzkin elimination
1(12)
1.1 Introduction
1(1)
1.2 Exercises and solutions
2(11)
2 Affine subspaces
13(10)
2.1 Introduction
13(1)
2.2 Exercises and solutions
14(9)
3 Convex subsets
23(26)
3.1 Introduction
23(1)
3.2 Exercises and solutions
24(25)
4 Polyhedra
49(12)
4.1 Introduction
49(1)
4.2 Exercises and solutions
50(11)
5 Computations with polyhedra
61(20)
5.1 Introduction
61(1)
5.2 Exercises and solutions
62(19)
6 Closed convex subsets and separating hyperplanes
81(18)
6.1 Introduction
81(1)
6.2 Exercises and solutions
82(17)
7 Convex functions
99(14)
7.1 Introduction
99(2)
7.2 Exercises and solutions
101(12)
8 Differentiable functions of several variables
113(10)
8.1 Introduction
113(1)
8.2 Exercises and solutions
114(9)
9 Convex functions of several variables
123(24)
9.1 Introduction
123(2)
9.2 Exercises and solutions
125(22)
10 Convex optimization
147(28)
10.1 Introduction
147(2)
10.2 Exercises and solutions
149(26)
Appendix A Analysis
175(6)
A.1 Introduction
175(1)
A.2 Exercises and solutions
176(5)
Appendix B Linear (in)dependence and the rank of a matrix
181
B.1 Introduction
181(1)
B.2 Exercises and solutions
182