Preface |
|
xi | |
|
|
7 | (4) |
|
|
2 | (3) |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
7 | (4) |
|
|
9 | (2) |
|
|
11 | (56) |
|
2.1 A simple example revisited |
|
|
11 | (3) |
|
2.2 The biplot as a multidimensional scatterplot |
|
|
14 | (6) |
|
2.3 Calibrated biplot axes |
|
|
20 | (12) |
|
|
24 | (8) |
|
2.4 Refining the biplot display |
|
|
32 | (4) |
|
|
36 | (1) |
|
2.6 A closer look at biplot axes |
|
|
37 | (7) |
|
2.7 Adding new variables: the regression method |
|
|
44 | (3) |
|
2.8 Biplots and large data sets |
|
|
47 | (3) |
|
2.9 Enclosing a configuration of sample points |
|
|
50 | (14) |
|
|
53 | (1) |
|
2.9.2 Concentration ellipse |
|
|
54 | (3) |
|
|
57 | (1) |
|
|
58 | (4) |
|
2.9.5 Bivariate density plots |
|
|
62 | (2) |
|
2.10 Buying by mail order catalogue data set revisited |
|
|
64 | (2) |
|
|
66 | (1) |
|
3 Principal component analysis biplots |
|
|
67 | (78) |
|
3.1 An example: risk management |
|
|
67 | (4) |
|
3.2 Understanding PCA and constructing its biplot |
|
|
71 | (9) |
|
3.2.1 Representation of sample points |
|
|
72 | (2) |
|
3.2.2 Interpolation biplot axes |
|
|
74 | (3) |
|
3.2.3 Prediction biplot axes |
|
|
77 | (3) |
|
3.3 Measures of fit for PCA biplots |
|
|
80 | (14) |
|
3.4 Predictivities of newly interpolated samples |
|
|
94 | (4) |
|
3.5 Adding new axes to a PCA biplot and defining their predictivities |
|
|
98 | (5) |
|
3.6 Scaling the data in a PCA biplot |
|
|
103 | (4) |
|
3.7 Functions for constructing a PCA biplot |
|
|
107 | (12) |
|
|
107 | (8) |
|
3.7.2 Function PCAbipl.zoom |
|
|
115 | (1) |
|
3.7.3 Function PCAbipl.density |
|
|
115 | (1) |
|
3.7.4 Function PCAbipl.density.zoom |
|
|
116 | (1) |
|
3.7.5 Function PCA.predictivities |
|
|
117 | (1) |
|
3.7.6 Function PCA.predictions.mat |
|
|
117 | (1) |
|
3.7.7 Function vector.sum.interp |
|
|
117 | (1) |
|
3.7.8 Function circle.projection.interactive |
|
|
118 | (1) |
|
|
118 | (1) |
|
3.8 Some novel applications and enhancements of PCA biplots |
|
|
119 | (25) |
|
3.8.1 Risk management example revisited |
|
|
119 | (4) |
|
3.8.2 Quality as a multidimensional process |
|
|
123 | (5) |
|
3.8.3 Using axis predictivities in biplots |
|
|
128 | (1) |
|
3.8.4 One-dimensional PCA biplots |
|
|
128 | (7) |
|
3.8.5 Three-dimensional PCA biplots |
|
|
135 | (3) |
|
3.8.6 Changing the scaffolding axes in conventional two-dimensional PCA biplots |
|
|
138 | (1) |
|
3.8.7 Alpha-bags, kappa-ellipses, density surfaces and zooming |
|
|
139 | (1) |
|
3.8.8 Predictions by circle projection |
|
|
139 | (5) |
|
|
144 | (1) |
|
4 Canonical variate analysis biplots |
|
|
145 | (60) |
|
4.1 An example: revisiting the Ocotea data |
|
|
145 | (8) |
|
4.2 Understanding CVA and constructing its biplot |
|
|
153 | (4) |
|
4.3 Geometric interpretation of the transformation to the canonical space |
|
|
157 | (3) |
|
|
160 | (2) |
|
4.4.1 Biplot axes for interpolation |
|
|
160 | (1) |
|
4.4.2 Biplot axes for prediction |
|
|
160 | (2) |
|
4.5 Adding new points and variables to a CVA biplot |
|
|
162 | (1) |
|
4.5.1 Adding new sample points |
|
|
162 | (1) |
|
4.5.2 Adding new variables |
|
|
162 | (1) |
|
4.6 Measures of fit for CVA biplots |
|
|
163 | (6) |
|
4.6.1 Predictivities of new samples and variables |
|
|
168 | (1) |
|
4.7 Functions for constructing a CVA biplot |
|
|
169 | (3) |
|
|
169 | (1) |
|
4.7.2 Function CVAbipl.zoom |
|
|
170 | (1) |
|
4.7.3 Function CVAbipl.density |
|
|
170 | (1) |
|
4.7.4 Function CVAbipl.density.zoom |
|
|
170 | (1) |
|
4.7.5 Function CVAbipl.pred. regions |
|
|
170 | (1) |
|
4.7.6 Function CVA.predictivities |
|
|
171 | (1) |
|
4.7.7 Function CVA.predictions.mat |
|
|
172 | (1) |
|
4.8 Continuing the Ocotea example |
|
|
172 | (6) |
|
4.9 CVA biplots for two classes |
|
|
178 | (7) |
|
4.9.1 An example of two-class CVA biplots |
|
|
178 | (7) |
|
4.10 A five-class CVA biplot example |
|
|
185 | (4) |
|
4.11 Overlap in two-dimensional biplots |
|
|
189 | (16) |
|
4.11.1 Describing the structure of overlap |
|
|
189 | (2) |
|
4.11.2 Quantifying overlap |
|
|
191 | (14) |
|
5 Multidimensional scaling and nonlinear biplots |
|
|
205 | (50) |
|
|
205 | (1) |
|
5.2 The regression method |
|
|
206 | (2) |
|
|
208 | (4) |
|
5.4 Providing nonlinear biplot axes for variables |
|
|
212 | (15) |
|
5.4.1 Interpolation biplot axes |
|
|
215 | (3) |
|
5.4.2 Prediction biplot axes |
|
|
218 | (2) |
|
5.4.2.1 Normal projection |
|
|
220 | (2) |
|
5.4.2.2 Circular projection |
|
|
222 | (4) |
|
|
226 | (1) |
|
5.5 A PCA biplot as a nonlinear biplot |
|
|
227 | (2) |
|
5.6 Constructing nonlinear biplots |
|
|
229 | (5) |
|
5.6.1 Function Nonlinbipl |
|
|
230 | (3) |
|
5.6.2 Function CircularNonLinear.predictions |
|
|
233 | (1) |
|
|
234 | (9) |
|
5.7.1 A PCA biplot as a nonlinear biplot |
|
|
234 | (2) |
|
5.7.2 Nonlinear interpolative biplot |
|
|
236 | (1) |
|
5.7.3 Interpolating a new point into a nonlinear biplot |
|
|
237 | (1) |
|
5.7.4 Nonlinear predictive biplot with Clark's distance |
|
|
237 | (5) |
|
5.7.5 Nonlinear predictive biplot with square root of Manhattan distance |
|
|
242 | (1) |
|
|
243 | (10) |
|
5.8.1 Proof of centroid property for interpolated points in AoD |
|
|
249 | (1) |
|
5.8.2 A simple example of analysis of distance |
|
|
250 | (3) |
|
5.9 Functions AODplot and PermutationAnova |
|
|
253 | (2) |
|
|
253 | (1) |
|
5.9.2 Function PermutationAnova |
|
|
254 | (1) |
|
6 Two-way tables: biadditive biplots |
|
|
255 | (34) |
|
|
255 | (1) |
|
|
256 | (1) |
|
6.3 Statistical analysis of the biadditive model |
|
|
256 | (4) |
|
6.4 Biplots associated with biadditive models |
|
|
260 | (1) |
|
6.5 Interpolating new rows or columns |
|
|
261 | (1) |
|
6.6 Functions for constructing biadditive biplots |
|
|
262 | (5) |
|
|
262 | (3) |
|
6.6.2 Function biad.predictivities |
|
|
265 | (2) |
|
|
267 | (1) |
|
6.7 Examples of biadditive biplots: the wheat data |
|
|
267 | (16) |
|
|
283 | (6) |
|
7 Two-way tables: biplots associated with correspondence analysis |
|
|
289 | (76) |
|
|
289 | (1) |
|
7.2 The correspondence analysis biplot |
|
|
290 | (12) |
|
7.2.1 Approximation to Pearson's chi-squared |
|
|
290 | (1) |
|
7.2.2 Approximating the deviations from independence |
|
|
291 | (1) |
|
7.2.3 Approximation to the contingency ratio |
|
|
292 | (1) |
|
7.2.4 Approximation to chi-squared distance |
|
|
293 | (3) |
|
7.2.5 Canonical correlation approximation |
|
|
296 | (2) |
|
7.2.6 Approximating the row profiles |
|
|
298 | (1) |
|
7.2.7 Analysis of variance and generalities |
|
|
299 | (3) |
|
7.3 Interpolation of new (supplementary) points in CA biplots |
|
|
302 | (1) |
|
7.4 Other CA related methods |
|
|
303 | (3) |
|
7.5 Functions for constructing CA biplots |
|
|
306 | (6) |
|
|
306 | (4) |
|
7.5.2 Function ca.predictivities |
|
|
310 | (1) |
|
7.5.3 Function ca. predictions.mat |
|
|
310 | (1) |
|
7.5.4 Functions indicatormat. construct.df.Chisq.dist |
|
|
311 | (1) |
|
7.5.5 Function cabipl.doubling |
|
|
312 | (1) |
|
|
312 | (42) |
|
7.6.1 The RSA crime data set |
|
|
312 | (33) |
|
7.6.2 Ordinary PCA biplot of the weighted deviations matrix |
|
|
345 | (1) |
|
7.6.3 Doubling in a CA biplot |
|
|
346 | (8) |
|
|
354 | (11) |
|
8 Multiple correspondence analysis |
|
|
365 | (40) |
|
|
365 | (1) |
|
8.2 Multiple correspondence analysis of the indicator matrix |
|
|
366 | (6) |
|
|
372 | (4) |
|
8.4 Similarity matrices and the extended matching coefficient |
|
|
376 | (1) |
|
8.5 Category-level points |
|
|
377 | (1) |
|
|
378 | (3) |
|
8.7 Correlational approach |
|
|
381 | (2) |
|
8.8 Categorical (nonlinear) principal component analysis |
|
|
383 | (3) |
|
8.9 Functions for constructing MCA related biplots |
|
|
386 | (8) |
|
|
386 | (1) |
|
|
386 | (5) |
|
8.9.3 Function CATPCAbipl |
|
|
391 | (3) |
|
8.9.4 Function CATPCAbipl.predregions |
|
|
394 | (1) |
|
8.9.5 Function PCAbipl.cat |
|
|
394 | (1) |
|
8.10 Revisiting the remuneration data: examples of MCA and categorical PCA biplots |
|
|
394 | (11) |
|
|
405 | (18) |
|
|
405 | (1) |
|
9.2 Calculating inter-sample distances |
|
|
406 | (2) |
|
9.3 Constructing a generalized biplot |
|
|
408 | (1) |
|
|
408 | (4) |
|
|
412 | (1) |
|
|
413 | (2) |
|
|
415 | (2) |
|
|
417 | (3) |
|
9.9 Function for constructing generalized biplots |
|
|
420 | (3) |
|
|
423 | (22) |
|
10.1 Multidimensional scaling |
|
|
423 | (4) |
|
10.2 Monoplots related to the covariance matrix |
|
|
427 | (9) |
|
|
427 | (4) |
|
10.2.2 Correlation monoplot |
|
|
431 | (1) |
|
10.2.3 Coefficient of variation monoplots |
|
|
431 | (2) |
|
10.2.4 Other representations of correlations |
|
|
433 | (3) |
|
|
436 | (4) |
|
|
440 | (1) |
|
10.5 Functions for constructing monoplots |
|
|
441 | (4) |
|
10.5.1 Function MonoPlot.cov |
|
|
441 | (1) |
|
10.5.2 Function MonoPlot.cor |
|
|
442 | (1) |
|
10.5.3 Function MonoPlot.cor2 |
|
|
443 | (1) |
|
10.5.4 Function MonoPlot.coefvar |
|
|
443 | (1) |
|
10.5.5 Function MonoPlot.skew |
|
|
443 | (2) |
References |
|
445 | (4) |
Index |
|
449 | |