Muutke küpsiste eelistusi

E-raamat: Understanding Smart Sensors, Third Edition

  • Formaat: 388 pages
  • Ilmumisaeg: 31-Jan-2013
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781608075089
  • Formaat - PDF+DRM
  • Hind: 87,75 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 388 pages
  • Ilmumisaeg: 31-Jan-2013
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781608075089

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Now in its third edition, "Understanding Smart Sensors" is the most complete, up-to-date, and authoritative summary of the latest applications and developments impacting smart sensors in a single volume. This thoroughly expanded and revised edition of an Artech bestseller contains a wealth of new material, including critical coverage of sensor fusion and energy harvesting, the latest details on wireless technology, and greater emphasis on applications through the book. Utilizing the latest in smart sensor, microelectromechanical systems (MEMS) and microelectronic research and development, Engineers get the technical and practical information they need keep their designs and products on the cutting edge. Providing an extensive variety of information for both technical and non-technical professionals, this easy-to-understand, time-saving book covers current and emergent technologies, as well as their practical implementation. This comprehensive resource also includes an extensive list of smart sensor acronyms and a glossary of key terms.
Preface xvii
Chapter 1 Smart Sensor Basics
1(16)
1.1 Introduction
1(2)
1.2 Mechanical-Electronic Transitions in Sensing
3(1)
1.3 Nature of Sensors
4(5)
1.4 Integration of Micromachining and Microelectronics
9(2)
1.5 Application Example
11(2)
1.6 Summary
13(4)
References
13(1)
Selected Bibliography
14(3)
Chapter 2 Micromachining
17(30)
2.1 Introduction
17(1)
2.2 Bulk Micromachining
18(2)
2.3 Wafer Bonding
20(4)
2.3.1 Silicon-on-Silicon Bonding
20(1)
2.3.2 Silicon-on-Glass (Anodic) Bonding
21(1)
2.3.3 Silicon Fusion Bonding
22(1)
2.3.4 Wafer Bonding for More Complex Structures and Adding ICs
22(2)
2.4 Surface Micromachining
24(4)
2.4.1 Squeeze-Film Damping
26(1)
2.4.2 Stiction
26(1)
2.4.3 Particulate Control
26(1)
2.4.4 Combinations of Surface and Bulk Micromachining
27(1)
2.5 Other Micromachining Techniques
28(4)
2.5.1 The LIGA Process
28(1)
2.5.2 Dry Etching Processes
29(1)
2.5.3 Micromilling
30(1)
2.5.4 Lasers in Micromachining
31(1)
2.6 Combining MEMS with IC Fabrication
32(2)
2.7 Other Micromachined Materials
34(4)
2.7.1 Diamond as an Alternate Sensor Material
34(1)
2.7.2 Metal Oxides and Piezoelectric Sensing
35(1)
2.7.3 Films on Microstructures
36(1)
2.7.4 Micromachining Metal Structures
37(1)
2.7.5 Carbon Nanotube MEMS
38(1)
2.8 MEMS Foundry Services and Software Tools
38(2)
2.9 Application Example
40(2)
2.10 Summary
42(5)
References
42(3)
Selected Bibliography
45(2)
Chapter 3 The Nature of Semiconductor Sensor Output
47(20)
3.1 Introduction
47(1)
3.2 Sensor Output Characteristics
47(6)
3.2.1 Wheatstone Bridge
48(1)
3.2.2 Piezoresistivity in Silicon
49(2)
3.2.3 Semiconductor Sensor Definitions
51(2)
3.2.4 Static Versus Dynamic Operation
53(1)
3.3 Other Sensing Technologies
53(4)
3.3.1 Capacitive Sensing
53(1)
3.3.2 Piezoelectric Sensing
54(1)
3.3.3 The Hall-Effect
55(1)
3.3.4 Chemical Sensors
56(1)
3.3.5 Improving Sensor Characteristics
56(1)
3.4 Digital Output Sensors
57(2)
3.4.1 Incremental Optical Encoders
57(2)
3.4.2 Digital Techniques
59(1)
3.5 Noise/Interference Aspects
59(1)
3.6 Low Power, Low Voltage Sensors
60(1)
3.6.1 Impedance
61(1)
3.7 Analysis of Sensitivity Improvement
61(1)
3.7.1 Thin Diaphragm
61(1)
3.7.2 Increase Diaphragm Area
61(1)
3.7.3 Improve Topology
61(1)
3.8 Application Example
62(2)
3.9 Summary
64(3)
References
64(3)
Chapter 4 Getting Sensor Information Into the Microcontroller
67(18)
4.1 Introduction
67(1)
4.2 Amplification and Signal Conditioning
68(7)
4.2.1 Instrumentation Amplifiers
69(1)
4.2.2 Sleep-Mode Circuitry for Reducing Power
70(1)
4.2.3 Rail to Rail Operational Amplifiers
71(1)
4.2.4 Switched-Capacitor Amplifier
72(1)
4.2.5 Barometer Application Circuit
73(1)
4.2.6 4- to 20-mA Signal Transmitter
73(1)
4.2.7 Schmitt Trigger
74(1)
4.3 Separate Versus Integrated Signal Conditioning
75(1)
4.3.1 Integrated Signal Conditioning
75(1)
4.3.2 External Signal Conditioning
76(1)
4.4 Digital Conversion
76(5)
4.4.1 A/D Converters
77(2)
4.4.2 Performance of A/D Converters
79(1)
4.4.3 Implications of A/D Accuracy and Errors
80(1)
4.5 On-Line Tool for Evaluating a Sensor Interface Design
81(1)
4.6 Application Example
81(1)
4.7 Summary
81(4)
References
83(1)
Selected Bibliography
84(1)
Chapter 5 Using MCUs/DSPs to Increase Sensor IQ
85(22)
5.1 Introduction
85(1)
5.1.1 Other IC Technologies
85(1)
5.1.2 Logic Requirements
86(1)
5.2 MCU Control
86(1)
5.3 MCUs for Sensor Interface
87(5)
5.3.1 Peripherals
87(1)
5.3.2 Memory
88(1)
5.3.3 Input/Output
89(1)
5.3.4 On-Board A/D Conversion
90(1)
5.3.5 Power Saving Capability
90(2)
5.3.6 Local Voltage or Current Regulation
92(1)
5.4 DSP Control
92(3)
5.4.1 Digital Signal Controllers
93(1)
5.4.2 Field Programmable Gate Arrays
93(1)
5.4.3 Algorithms Versus Look-Up Tables
93(2)
5.5 Techniques and Systems Considerations
95(4)
5.5.1 Linearization
95(1)
5.5.2 PWM Control
96(1)
5.5.3 Autozero and Autorange
96(2)
5.5.4 Diagnostics
98(1)
5.5.5 Reducing EMC/RFI
98(1)
5.5.6 Indirect (Computed not Sensed) Versus Direct Sensing
98(1)
5.6 Software, Tools, and Support
99(1)
5.6.1 Design-in Support
99(1)
5.7 Sensor Integration
100(1)
5.8 Application Example
101(1)
5.9 Summary
102(5)
References
103(4)
Chapter 6 Communications for Smart Sensors
107(18)
6.1 Introduction
107(1)
6.2 Background and Definitions
107(2)
6.2.1 Definitions
108(1)
6.2.2 Background
108(1)
6.3 Sources (Organizations) and Standards
109(3)
6.4 Automotive Protocols
112(5)
6.4.1 CAN Protocol
113(2)
6.4.2 LIN Protocol
115(1)
6.4.3 Media Oriented Systems Transport
115(1)
6.4.4 FlexRay
116(1)
6.4.5 Other Automotive Protocol Aspects
116(1)
6.5 Industrial Networks
117(1)
6.5.1 Example Industrial Protocols
117(1)
6.6 Protocols in Other Applications
117(1)
6.7 Protocols in Silicon
118(2)
6.7.1 MCU with Integrated CAN
118(2)
6.7.2 LIN Implementation
120(1)
6.7.3 Ethernet Controller
120(1)
6.8 Transitioning Between Protocols
120(1)
6.9 Application Example
121(2)
6.10 Summary
123(2)
References
123(1)
Additional References
124(1)
Chapter 7 Control Techniques
125(22)
7.1 Introduction
125(3)
7.1.1 Programmable Logic Controllers
125(1)
7.1.2 Open-Versus Closed-Loop Systems
126(1)
7.1.3 PID Control
126(2)
7.2 State Machines
128(1)
7.3 Fuzzy Logic
129(3)
7.4 Neural Networks
132(2)
7.5 Combined Fuzzy Logic and Neural Networks
134(1)
7.6 Adaptive Control
134(3)
7.6.1 Observers for Sensing
135(2)
7.7 Other Control Areas
137(2)
7.7.1 RISC Versus CISC
138(1)
7.8 Impact of Artificial Intelligence
139(2)
7.9 Application Example
141(1)
7.10 Summary
142(5)
References
143(4)
Chapter 8 Wireless Sensing
147(26)
8.1 Introduction
147(3)
8.1.1 The RF Spectrum
148(1)
8.1.2 Spread Spectrum
149(1)
8.2 Wireless Data and Communications
150(1)
8.3 Wireless Sensing Networks
151(3)
8.3.1 ZigBee
152(1)
8.3.2 ZigBee-Like Wireless
152(1)
8.3.3 ANT+
152(1)
8.3.4 6LoWPAN
153(1)
8.3.5 Near Field Communication (NFC)
153(1)
8.3.6 Z-Wave
153(1)
8.3.7 Dust Networks
154(1)
8.3.8 Other RF Wireless Solutions
154(1)
8.3.9 Optical Signal Transmission
154(1)
8.4 Industrial Wireless Sensing Networks
154(1)
8.5 RF Sensing
155(8)
8.5.1 Surface Acoustic Wave Devices
155(1)
8.5.2 Radar
156(1)
8.5.3 Light Detection and Ranging (LIDAR)
157(1)
8.5.4 Global Positioning System
158(1)
8.5.5 Remote Emissions Sensing
159(1)
8.5.6 Remote Keyless Entry
159(1)
8.5.7 Intelligent Transportation System
160(2)
8.5.8 RF-ID
162(1)
8.5.9 Other Remote Sensing
163(1)
8.6 Telemetry
163(3)
8.7 RF MEMS
166(1)
8.8 Application Example
167(1)
8.9 Summary
168(5)
References
169(2)
Selected Bibliography
171(2)
Chapter 9 MEMS Beyond Sensors
173(24)
9.1 Introduction
173(1)
9.2 MEMS Actuators
174(7)
9.2.1 Microvalves
174(2)
9.2.2 Micromotors
176(1)
9.2.3 Micropumps
177(2)
9.2.4 Microdynamometer
179(1)
9.2.5 Microsteam Engine
180(1)
9.2.6 Actuators in Other Semiconductor Materials
180(1)
9.3 Other Micromachined Structures
181(11)
9.3.1 Cooling Channels
182(1)
9.3.2 Microoptics
183(1)
9.3.3 Microgripper
183(2)
9.3.4 Microprobes
185(1)
9.3.5 Micromirrors
186(1)
9.3.6 Heating Elements
187(1)
9.3.7 Thermionic Emitters
187(1)
9.3.8 Field Emission Devices
188(1)
9.3.9 Unfoldable Microelements
188(2)
9.3.10 Micronozzles
190(1)
9.3.11 Interconnects for Stacked Wafers
191(1)
9.3.12 Nanoguitar
191(1)
9.4 Application Example
192(2)
9.5 Summary
194(3)
References
194(3)
Chapter 10 Packaging, Testing, and Reliability Implications of Smarter Sensors
197(22)
10.1 Introduction
197(1)
10.2 Semiconductor Packaging Applied to Sensors
197(4)
10.2.1 Increased Pin Count
200(1)
10.3 Hybrid Packaging
201(2)
10.3.1 Ceramic Packaging and Ceramic Substrates
201(1)
10.3.2 Multichip Modules
201(1)
10.3.3 Dual-Chip Packaging
202(1)
10.3.4 BGA Packaging
202(1)
10.4 Common Packaging for Sensors
203(6)
10.4.1 Plastic Packaging
204(1)
10.4.2 Surface-Mount Packaging
204(1)
10.4.3 Flip-Chip
205(1)
10.4.4 Wafer-Level Packaging
206(1)
10.4.5 3-D Packaging
207(2)
10.5 Reliability Implications
209(5)
10.5.1 The Physics of Failure
211(1)
10.5.2 Wafer-Level Sensor Reliability
212(2)
10.6 Testing Smarter Sensors
214(1)
10.7 Application Example
214(1)
10.8 Summary
215(4)
References
216(3)
Chapter 11 Mechatronics and Sensing Systems
219(16)
11.1 Introduction
219(1)
11.1.1 Integration and Mechatronics
219(1)
11.2 Smart-Power ICs
220(2)
11.3 Embedded Sensing
222(6)
11.3.1 Temperature Sensing
222(3)
11.3.2 Current Sensing in Power ICs
225(1)
11.3.3 Diagnostics
225(3)
11.3.4 MEMS Relays
228(1)
11.4 Other System Aspects
228(4)
11.4.1 Batteries
229(1)
11.4.2 Field Emission Displays
230(1)
11.4.3 System Voltage Transients, Electrostatic Discharge, and Electromagnetic Interference
230(2)
11.5 Application Example
232(1)
11.6 Summary
233(2)
References
233(2)
Chapter 12 Standards for Smart Sensing
235(22)
12.1 Introduction
235(1)
12.2 Setting the Standards for Smart Sensors and Systems
235(2)
12.3 IEEE 1451.1
237(4)
12.3.1 Network-Capable Application Processor
237(3)
12.3.2 Network Communication Models
240(1)
12.4 IEEE 1451.2
241(8)
12.4.1 STIM
241(2)
12.4.2 Transducer Electronic Data Sheet
243(2)
12.4.3 TII
245(1)
12.4.4 Calibration/Correction Engine
245(2)
12.4.5 Sourcing Power to STIMs
247(1)
12.4.6 Representing Physical Units in the TEDS
248(1)
12.5 IEEE 1451.3
249(1)
12.6 IEEE 1451.4
250(1)
12.7 IEEE 1451.5
250(2)
12.8 IEEE P1451.6
252(1)
12.9 IEEE 1451.7
252(1)
12.10 Extending the System to the Network
252(1)
12.11 Application Example
252(2)
12.12 Summary
254(3)
References
255(1)
Selected Bibliography
256(1)
Chapter 13 More Standards Impacting Sensors
257(14)
13.1 Introduction
257(1)
13.2 Sensor Plug and Play
257(2)
13.3 Universal Serial Bus
259(1)
13.4 Development Tools Establish De Facto Standards
260(1)
13.5 Alternate Standards
261(6)
13.5.1 Airplane Networks
261(1)
13.5.2 Automotive Safety Network
262(1)
13.5.3 Another Automotive Safety Network
263(1)
13.5.4 Automotive Sensor Protocol
264(3)
13.6 Consumer/Cell Phone Apps
267(1)
13.7 Application Example
268(1)
13.8 Summary
269(2)
References
269(2)
Chapter 14 Sensor Fusion
271(14)
14.1 Introduction
271(1)
14.2 Sensor and Other Fusion Background
271(2)
14.3 Automotive Applications
273(4)
14.3.1 Ranging and Vision
274(1)
14.3.2 Sensor Fusion for Virtual Sensors
275(1)
14.3.3 Autonomous Driving
276(1)
14.4 Industrial (Robotic) Applications
277(1)
14.5 Consumer Applications
278(3)
14.5.1 Fusion Software in the Sensor
278(1)
14.5.2 Separate Fusion Software
279(1)
14.5.3 Flexible Fusion Software
279(1)
14.5.4 Agnostic Sensor Fusion
279(1)
14.5.5 Simulation and Testing
280(1)
14.6 Application Example
281(1)
14.7 Summary
282(3)
References
282(2)
Selected Bibliography
284(1)
Chapter 15 Energy Harvesting for Wireless Sensor Nodes
285(24)
15.1 Introduction
285(1)
15.2 Applications Drive Technology Implementation and Development
285(2)
15.2.1 Structural Health Monitoring
285(1)
15.2.2 Building Automations Systems
286(1)
15.2.3 Industrial Applications
286(1)
15.2.4 Automotive
286(1)
15.2.5 Aircraft
286(1)
15.2.6 Portable Consumer
287(1)
15.2.7 Remote Distributed Applications
287(1)
15.3 Complete System Consideration
287(1)
15.4 EH Technologies
288(9)
15.4.1 Thermoelectric EH
288(3)
15.4.2 Piezoelectric EH
291(2)
15.4.3 Photovoltaic EH
293(1)
15.4.4 Electromagnetic EH
294(1)
15.4.5 RF EH
294(1)
15.4.6 Electromechanical EH
294(1)
15.4.7 Multiple Energy Sources
295(1)
15.4.8 Future Concepts
296(1)
15.5 Energy Storage
297(1)
15.5.1 Batteries
297(1)
15.5.2 Ultracapacitors
298(1)
15.6 Energy Budget
298(4)
15.6.1 Power Management ICs
298(1)
15.6.2 MCUs
299(1)
15.6.3 Wireless Transmission
300(1)
15.6.4 Sensor Power Consumption
301(1)
15.7 Development Systems
302(2)
15.8 Application Example
304(1)
15.9 Summary
304(5)
References
306(2)
Selected Bibliography
308(1)
Chapter 16 The Next Phase of Sensing Systems
309(20)
16.1 Introduction
309(1)
16.2 Future Sensor Plus Semiconductor Capabilities
310(3)
16.2.1 Monolithic Versus Package-Level Integration
311(2)
16.3 Future System Requirements
313(3)
16.3.1 Sensing in Automobiles
313(2)
16.3.2 Sensing in Smart Phones
315(1)
16.3.3 Health Care Sensors
316(1)
16.4 Software, Sensing, and the System
316(4)
16.4.1 Sensor Apps
317(2)
16.4.2 Cloud Sensing
319(1)
16.5 Trusted Sensing
320(1)
16.6 Alternate Views of Smart Sensing
321(1)
16.7 The Smart Loop
322(1)
16.8 Application Example
323(1)
16.9 Summary
324(5)
Acknowledgment
325(1)
References
325(2)
Selected Bibliography
327(2)
Appendix A
List of Web Sites for Additional Smart Sensor and MEMS Information
329(4)
Selected Bibliography
333(2)
Smart Sensor Acronym Decoder and Glossary
335(18)
About the Author 353(2)
Index 355
Randy Frank is the president of Randy Frank and Associates in Scottsdale, Arizona. A well established author and holder of three patents, Mr. Frank received his B.S. and M.S. in electrical engineering, as well as his M.B.A. in management, from Wayne State University in Detroit, Michigan. He is the former chairman and a member of the Sensors Standards Committee of the Society of Automotive Engineers and a member of the IEEE.