|
1 Introduction to Feature Selection |
|
|
1 | (26) |
|
|
1 | (2) |
|
|
2 | (1) |
|
1.1.2 Categorical Attributes |
|
|
2 | (1) |
|
|
3 | (5) |
|
1.2.1 Supervised Feature Selection |
|
|
4 | (2) |
|
1.2.2 Unsupervised Feature Selection |
|
|
6 | (2) |
|
1.3 Feature Selection Methods |
|
|
8 | (3) |
|
|
8 | (2) |
|
|
10 | (1) |
|
|
10 | (1) |
|
1.4 Objective of Feature Selection |
|
|
11 | (2) |
|
1.5 Feature Selection Criteria |
|
|
13 | (2) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
1.5.5 Classification Accuracy |
|
|
15 | (1) |
|
1.6 Feature Generation Schemes |
|
|
15 | (3) |
|
1.6.1 Forward Feature Generation |
|
|
15 | (1) |
|
1.6.2 Backward Feature Generation |
|
|
16 | (1) |
|
1.6.3 Random Feature Generation |
|
|
17 | (1) |
|
|
18 | (4) |
|
1.7.1 Search Organization |
|
|
18 | (1) |
|
1.7.2 Generation of a Feature Selection Algorithm |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
1.7.5 Applications of Feature Selection |
|
|
20 | (1) |
|
1.7.6 Feature Selection: Issues |
|
|
21 | (1) |
|
|
22 | (5) |
|
|
23 | (4) |
|
|
27 | (26) |
|
2.1 Curse of Dimensionality |
|
|
27 | (1) |
|
2.2 Transformation-Based Reduction |
|
|
28 | (8) |
|
|
29 | (4) |
|
|
33 | (3) |
|
2.3 Selection-Based Reduction |
|
|
36 | (6) |
|
2.3.1 Feature Selection in Supervised Learning |
|
|
36 | (1) |
|
|
37 | (2) |
|
|
39 | (1) |
|
2.3.4 Feature Selection in Unsupervised Learning |
|
|
40 | (2) |
|
2.4 Correlation-Based Feature Selection |
|
|
42 | (4) |
|
2.4.1 Correlation-Based Measures |
|
|
43 | (1) |
|
2.4.2 Correlation-Based Filter Approach (FCBF) |
|
|
44 | (2) |
|
2.4.3 Efficient Feature Selection Based on Correlation Measure (ECMBF) |
|
|
46 | (1) |
|
2.5 Mutual Information-Based Feature Selection |
|
|
46 | (4) |
|
2.5.1 A Mutual Information-Based Feature Selection Method (MIFS-ND) |
|
|
48 | (1) |
|
2.5.2 Multi-objective Artificial Bee Colony (MOABC) Approach |
|
|
48 | (2) |
|
|
50 | (3) |
|
|
50 | (3) |
|
|
53 | (28) |
|
|
53 | (3) |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
3.1.5 Mathematical Symbols for Set Theory |
|
|
56 | (1) |
|
3.2 Knowledge Representation and Vagueness |
|
|
56 | (2) |
|
3.3 Rough Set Theory (RST) |
|
|
58 | (12) |
|
3.3.1 Information Systems |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
3.3.6 Discernibility Matrix |
|
|
62 | (1) |
|
3.3.7 Discernibility Function |
|
|
63 | (1) |
|
3.3.8 Decision-Relative Discernibility Matrix |
|
|
63 | (3) |
|
|
66 | (2) |
|
|
68 | (2) |
|
3.4 Discretization Process |
|
|
70 | (2) |
|
3.5 Miscellaneous Concepts |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
73 | (8) |
|
|
75 | (6) |
|
4 Advance Concepts in RST |
|
|
81 | (28) |
|
|
81 | (7) |
|
|
81 | (2) |
|
4.1.2 Fuzzy Sets and Partial Truth |
|
|
83 | (1) |
|
4.1.3 Membership Function |
|
|
83 | (1) |
|
|
84 | (2) |
|
4.1.5 Fuzzy Set Representation |
|
|
86 | (1) |
|
|
86 | (2) |
|
4.2 Fuzzy-Rough Set Hybridization |
|
|
88 | (4) |
|
4.2.1 Supervised Learning and Information Retrieval |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
89 | (2) |
|
|
91 | (1) |
|
|
92 | (10) |
|
4.3.1 Incremental Dependency Classes (IDC) |
|
|
92 | (5) |
|
4.3.2 Direct Dependency Classes (DDC) |
|
|
97 | (5) |
|
4.4 Redefined Approximations |
|
|
102 | (4) |
|
4.4.1 Redefined Lower Approximation |
|
|
102 | (2) |
|
4.4.2 Redefined Upper Approximation |
|
|
104 | (2) |
|
|
106 | (3) |
|
|
106 | (3) |
|
5 Rough Set-Based Feature Selection Techniques |
|
|
109 | (22) |
|
|
109 | (3) |
|
5.2 Hybrid Feature Selection Algorithm Based on Particle Swarm Optimization (PSO) |
|
|
112 | (1) |
|
|
113 | (2) |
|
5.4 Incremental Feature Selection Algorithm (IFSA) |
|
|
115 | (1) |
|
5.5 Feature Selection Method Using Fish Swarm Algorithm (FSA) |
|
|
116 | (3) |
|
5.5.1 Representation of Position |
|
|
117 | (1) |
|
5.5.2 Distance and Centre of Fish |
|
|
118 | (1) |
|
5.5.3 Position Update Strategies |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
119 | (1) |
|
5.6 Feature Selection Method Based on QuickReduct and Improved Harmony Search Algorithm (RS-IHS-QR) |
|
|
119 | (1) |
|
5.7 A Hybrid Feature Selection Approach Based on Heuristic and Exhaustive Algorithms Using Rough set Theory (FSHEA) |
|
|
120 | (3) |
|
5.7.1 Feature Selection Preprocessor |
|
|
120 | (2) |
|
5.7.2 Using Relative Dependency Algorithm to Optimize the Selected Features |
|
|
122 | (1) |
|
5.8 A Rough Set-Based Feature Selection Approach Using Random Feature Vectors |
|
|
123 | (4) |
|
|
127 | (4) |
|
|
129 | (2) |
|
6 Unsupervised Feature Selection Using RST |
|
|
131 | (14) |
|
6.1 Unsupervised QuickReduct Algorithm (USQR) |
|
|
131 | (3) |
|
6.2 Unsupervised Relative Reduct Algorithm |
|
|
134 | (2) |
|
6.3 Unsupervised Fuzzy-Rough Feature Selection |
|
|
136 | (1) |
|
6.4 Unsupervised PSO-Based Relative Reduct (US-PSO-RR) |
|
|
137 | (3) |
|
6.5 Unsupervised PSO-Based Quick Reduct (US-PSO-QR) |
|
|
140 | (2) |
|
|
142 | (3) |
|
|
143 | (2) |
|
7 Critical Analysis of Feature Selection Algorithms |
|
|
145 | (10) |
|
7.1 Pros and Cons of Feature Selection Techniques |
|
|
145 | (2) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
147 | (1) |
|
7.2.1 Percentage Decrease in Execution Time |
|
|
147 | (1) |
|
|
147 | (1) |
|
7.3 Critical Analysis of Various Feature Selection Algorithms |
|
|
148 | (5) |
|
|
148 | (1) |
|
7.3.2 Rough Set-Based Genetic Algorithm |
|
|
149 | (1) |
|
|
150 | (1) |
|
7.3.4 Incremental Feature Selection Algorithm (IFSA) |
|
|
151 | (1) |
|
|
151 | (1) |
|
7.3.6 Feature Selection Using Exhaustive and Heuristic Approach |
|
|
152 | (1) |
|
7.3.7 Feature Selection Using Random Feature Vectors |
|
|
153 | (1) |
|
|
153 | (2) |
|
|
153 | (2) |
|
|
155 | |
|
|
155 | (3) |
|
8.1.1 Variable Declaration |
|
|
156 | (1) |
|
|
156 | (1) |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
157 | (1) |
|
|
157 | (1) |
|
8.1.7 LBound and UBound Functions |
|
|
158 | (1) |
|
8.2 How to Import the Source Code |
|
|
158 | (5) |
|
8.3 Calculating Dependency Using Positive Region |
|
|
163 | (10) |
|
|
163 | (1) |
|
8.3.2 Calculate DRR Function |
|
|
164 | (2) |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
168 | (1) |
|
8.3.6 AlreadyExists Method |
|
|
169 | (1) |
|
8.3.7 InsertObject Method |
|
|
170 | (1) |
|
8.3.8 MatchCClasses Function |
|
|
171 | (1) |
|
|
172 | (1) |
|
8.4 Calculating Dependency Using Incremental Dependency Classes |
|
|
173 | (5) |
|
|
173 | (1) |
|
8.4.2 CalculateDID Function |
|
|
173 | (3) |
|
|
176 | (1) |
|
|
177 | (1) |
|
|
178 | (1) |
|
8.5 Lower Approximation Using Conventional Method |
|
|
178 | (5) |
|
|
178 | (2) |
|
8.5.2 CalculateLAObjects Method |
|
|
180 | (1) |
|
|
181 | (1) |
|
|
182 | (1) |
|
8.6 Lower Approximation Using Redefined Preliminaries |
|
|
183 | (3) |
|
8.7 Upper Approximation Using Conventional Method |
|
|
186 | (1) |
|
8.8 Upper Approximation Using Redefined Preliminaries |
|
|
187 | (2) |
|
8.9 QuickReduct Algorithm |
|
|
189 | (5) |
|
8.9.1 Miscellaneous Methods |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
193 | (1) |
|
|
194 | |