Muutke küpsiste eelistusi

E-raamat: Unifying Framework for Formal Theories of Novelty: Discussions, Guidelines, and Examples for Artificial Intelligence

Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 43,21 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents the first unified formalization for defining novelty across the span of machine learning, symbolic-reasoning, and control and planning-based systems.  Dealing with novelty, things not previously seen by a system, is a critical issue for building vision-systems and general intelligent systems.  The book presents examples of using this framework to define and evaluate in multiple domains including  image recognition image-based open world learning,  hand-writing and author analysis,  CartPole Control,  Image Captioning, and Monopoly.  Chapters are written by well-known contributors to this new and emerging field.  In addition, examples are provided from multiple areas, such as machine-learning-based control problems, symbolic reasoning, and multi-player games.  




                
A Unifying Framework for Novelty.- Example Application of Framework: CartPole Domain.- Image Classification.- Novelty in Handwriting Recognition.- Visual Media Caption Domain.- Monopoly Multi-Agent Game Domain.- Related Work.- Prior Perspectives on Novelty and Conclusions.

Terrance E. Boult, Ph.D., is a Distinguished Professor and El Pomar Endowed Professor of Innovation and Security in the Department of Computer Science at the University of Colorado at Colorado Springs.  He is also an IEEE Fellow and an internationally acknowledged researcher in machine learning, computer vision, biometrics, and cybersecurity with 15 patents issued and 400+ articles.  Dr. Boult received the B.S. degree in Applied Mathematics, the M.S. degree in Computer Science, and the Ph.D. degree in Computer Science from Columbia University.  He has won multiple teaching awards, research/innovation awards, best paper awards, best reviewer awards, and IEEE service awards. 

Walter Scheirer, Ph.D., is Dennis O. Doughty Collegiate Associate Professor in the Department of Computer Science and Engineering at the University of Notre Dame.  Previously, he was a postdoctoral fellow at Harvard University with affiliations in the Schoolof Engineering and Applied Sciences, Department of Molecular and Cellular Biology, and Center for Brain Science.  Dr. Scheirer received his Ph.D. from the University of Colorado and his M.S. and B.A. degrees from Lehigh University. He has extensive experience in the areas of computer vision, machine learning, and image processing.  His current research is focused on media forensics and studying disinformation circulating on social media.