Muutke küpsiste eelistusi

E-raamat: Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 127,30 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book concerns the theory of unipotent elements in simple algebraic groups over algebraically closed or finite fields, and nilpotent elements in the corresponding simple Lie algebras. These topics have been an important area of study for decades, with applications to representation theory, character theory, the subgroup structure of algebraic groups and finite groups, and the classification of the finite simple groups. The main focus is on obtaining full information on class representatives and centralizers of unipotent and nilpotent elements. Although there is a substantial literature on this topic, this book is the first single source where such information is presented completely in all characteristics. In addition, many of the results are new--for example, those concerning centralizers of nilpotent elements in small characteristics. Indeed, the whole approach, while using some ideas from the literature, is novel, and yields many new general and specific facts concerning the structure and embeddings of centralizers.
Preface xi
Chapter 1 Introduction
1(8)
Chapter 2 Preliminaries
9(30)
2.1 Notation
9(4)
2.2 Subgroups
13(2)
2.3 Automorphisms and Lie algebras
15(4)
2.4 Frobenius morphisms and the Lang-Steinberg theorem
19(1)
2.5 Nilpotent and unipotent elements
20(4)
2.6 Distinguished parabolic subgroups
24(4)
2.7 Centralizers of nilpotent elements
28(6)
2.8 Distinguished elements in characteristic zero
34(5)
Chapter 3 Classical groups in good characteristic
39(20)
3.1 Preliminary lemmas
40(3)
3.2 Proof of Theorem 3.1
43(6)
3.3 Additional information
49(10)
Chapter 4 Classical groups in bad characteristic: statement of results
59(6)
Chapter 5 Nilpotent elements: the symplectic and orthogonal cases, p = 2
65(26)
5.1 Indecomposables
65(2)
5.2 Distinguished nilpotent elements
67(2)
5.3 Distinguished normal form
69(2)
5.4 Centralizers of nilpotent elements I: connected centralizers
71(7)
5.5 Centralizers of nilpotent elements II: component groups
78(8)
5.6 Orthogonal groups of odd dimension
86(3)
5.7 Splitting
89(1)
5.8 Labellings of some nilpotent classes
90(1)
Chapter 6 Unipotent elements in symplectic and orthogonal groups, p = 2
91(22)
6.1 Indecomposables
91(1)
6.2 Distinguished unipotent elements
92(1)
6.3 A map from unipotents to nilpotents in SO(V)
93(1)
6.4 A lemma on representations
94(2)
6.5 Centralizers of unipotents I: connected centralizers
96(5)
6.6 Centralizers of unipotents II: component groups
101(8)
6.7 Splitting
109(1)
6.8 Orthogonal groups of odd dimension
110(1)
6.9 Labellings of some unipotent classes
110(3)
Chapter 7 Finite classical groups
113(6)
7.1 Good characteristic
113(3)
7.2 Bad characteristic
116(3)
Chapter 8 Tables of examples in low dimensions
119(10)
Chapter 9 Exceptional groups: statement of results for nilpotent elements
129(4)
Chapter 10 Parabolic subgroups and labellings
133(6)
10.1 T-labellings and associated parabolic subgroups
133(3)
10.2 Labellings of some distinguished classes in classical groups
136(3)
Chapter 11 Reductive subgroups
139(14)
Chapter 12 Annihilator spaces of nilpotent elements
153(16)
12.1 Lemmas on representation theory
153(3)
12.2 Annihilator spaces of distinguished nilpotent elements
156(9)
12.3 Further results
165(4)
Chapter 13 Standard distinguished nilpotent elements
169(34)
13.1 Distinguished nilpotent elements corresponding to distinguished parabolic subgroups
169(12)
13.2 Component groups
181(20)
13.3 Subgroups J, R
201(2)
Chapter 14 Exceptional distinguished nilpotent elements
203(16)
Chapter 15 Nilpotent classes and centralizers in E8
219(44)
15.1 Preliminary lemmas
220(5)
15.2 Proof of Theorem 15.1, I: strategy
225(3)
15.3 Proof of Theorem 15.1, II: calculation of the centralizers
228(30)
15.4 Proof of Theorem 15.1, III: completeness of the list
258(5)
Chapter 16 Nilpotent elements in the other exceptional types
263(18)
16.1 The cases where (Go,p) ≠ (F4,2) or (G2,3)
263(4)
16.2 The case (Go,p) = (G2,3)
267(1)
16.3 The case (Go,p) = (F4,2)
268(8)
16.4 Dual pairs
276(5)
Chapter 17 Exceptional groups: statement of results for unipotent elements
281(6)
Chapter 18 Corresponding unipotent and nilpotent elements
287(12)
Chapter 19 Distinguished unipotent elements
299(18)
19.1 The proof of Theorem 19.1
301(9)
19.2 The proof of Theorem 19.2
310(7)
Chapter 20 Non-distinguished unipotent classes
317(24)
20.1 The case G = E6, E7, E8
317(12)
20.2 The case G = F4, p ≠ 2
329(1)
20.3 The case G = F4, p = 2
330(2)
20.4 The case G = G2
332(1)
20.5 Proofs of the results 17.1 - 17.10
332(9)
Chapter 21 Proofs of Theorems 1, 2 and Corollaries 3 - 8
341(10)
Chapter 22 Tables of nilpotent and unipotent classes in the exceptional groups
351(22)
22.1 Classes and centralizers in exceptional algebraic groups
351(1)
22.2 Unipotent classes and centralizers in finite exceptional groups
351(1)
22.3 The dual pairs J, R
352(21)
Bibliography 373(4)
Glossary of symbols 377(2)
Index 379