Preface |
|
xi | |
|
|
1 | (8) |
|
|
9 | (30) |
|
|
9 | (4) |
|
|
13 | (2) |
|
2.3 Automorphisms and Lie algebras |
|
|
15 | (4) |
|
2.4 Frobenius morphisms and the Lang-Steinberg theorem |
|
|
19 | (1) |
|
2.5 Nilpotent and unipotent elements |
|
|
20 | (4) |
|
2.6 Distinguished parabolic subgroups |
|
|
24 | (4) |
|
2.7 Centralizers of nilpotent elements |
|
|
28 | (6) |
|
2.8 Distinguished elements in characteristic zero |
|
|
34 | (5) |
|
Chapter 3 Classical groups in good characteristic |
|
|
39 | (20) |
|
|
40 | (3) |
|
|
43 | (6) |
|
3.3 Additional information |
|
|
49 | (10) |
|
Chapter 4 Classical groups in bad characteristic: statement of results |
|
|
59 | (6) |
|
Chapter 5 Nilpotent elements: the symplectic and orthogonal cases, p = 2 |
|
|
65 | (26) |
|
|
65 | (2) |
|
5.2 Distinguished nilpotent elements |
|
|
67 | (2) |
|
5.3 Distinguished normal form |
|
|
69 | (2) |
|
5.4 Centralizers of nilpotent elements I: connected centralizers |
|
|
71 | (7) |
|
5.5 Centralizers of nilpotent elements II: component groups |
|
|
78 | (8) |
|
5.6 Orthogonal groups of odd dimension |
|
|
86 | (3) |
|
|
89 | (1) |
|
5.8 Labellings of some nilpotent classes |
|
|
90 | (1) |
|
Chapter 6 Unipotent elements in symplectic and orthogonal groups, p = 2 |
|
|
91 | (22) |
|
|
91 | (1) |
|
6.2 Distinguished unipotent elements |
|
|
92 | (1) |
|
6.3 A map from unipotents to nilpotents in SO(V) |
|
|
93 | (1) |
|
6.4 A lemma on representations |
|
|
94 | (2) |
|
6.5 Centralizers of unipotents I: connected centralizers |
|
|
96 | (5) |
|
6.6 Centralizers of unipotents II: component groups |
|
|
101 | (8) |
|
|
109 | (1) |
|
6.8 Orthogonal groups of odd dimension |
|
|
110 | (1) |
|
6.9 Labellings of some unipotent classes |
|
|
110 | (3) |
|
Chapter 7 Finite classical groups |
|
|
113 | (6) |
|
|
113 | (3) |
|
|
116 | (3) |
|
Chapter 8 Tables of examples in low dimensions |
|
|
119 | (10) |
|
Chapter 9 Exceptional groups: statement of results for nilpotent elements |
|
|
129 | (4) |
|
Chapter 10 Parabolic subgroups and labellings |
|
|
133 | (6) |
|
10.1 T-labellings and associated parabolic subgroups |
|
|
133 | (3) |
|
10.2 Labellings of some distinguished classes in classical groups |
|
|
136 | (3) |
|
Chapter 11 Reductive subgroups |
|
|
139 | (14) |
|
Chapter 12 Annihilator spaces of nilpotent elements |
|
|
153 | (16) |
|
12.1 Lemmas on representation theory |
|
|
153 | (3) |
|
12.2 Annihilator spaces of distinguished nilpotent elements |
|
|
156 | (9) |
|
|
165 | (4) |
|
Chapter 13 Standard distinguished nilpotent elements |
|
|
169 | (34) |
|
13.1 Distinguished nilpotent elements corresponding to distinguished parabolic subgroups |
|
|
169 | (12) |
|
|
181 | (20) |
|
|
201 | (2) |
|
Chapter 14 Exceptional distinguished nilpotent elements |
|
|
203 | (16) |
|
Chapter 15 Nilpotent classes and centralizers in E8 |
|
|
219 | (44) |
|
|
220 | (5) |
|
15.2 Proof of Theorem 15.1, I: strategy |
|
|
225 | (3) |
|
15.3 Proof of Theorem 15.1, II: calculation of the centralizers |
|
|
228 | (30) |
|
15.4 Proof of Theorem 15.1, III: completeness of the list |
|
|
258 | (5) |
|
Chapter 16 Nilpotent elements in the other exceptional types |
|
|
263 | (18) |
|
16.1 The cases where (Go,p) ≠ (F4,2) or (G2,3) |
|
|
263 | (4) |
|
16.2 The case (Go,p) = (G2,3) |
|
|
267 | (1) |
|
16.3 The case (Go,p) = (F4,2) |
|
|
268 | (8) |
|
|
276 | (5) |
|
Chapter 17 Exceptional groups: statement of results for unipotent elements |
|
|
281 | (6) |
|
Chapter 18 Corresponding unipotent and nilpotent elements |
|
|
287 | (12) |
|
Chapter 19 Distinguished unipotent elements |
|
|
299 | (18) |
|
19.1 The proof of Theorem 19.1 |
|
|
301 | (9) |
|
19.2 The proof of Theorem 19.2 |
|
|
310 | (7) |
|
Chapter 20 Non-distinguished unipotent classes |
|
|
317 | (24) |
|
20.1 The case G = E6, E7, E8 |
|
|
317 | (12) |
|
20.2 The case G = F4, p ≠ 2 |
|
|
329 | (1) |
|
20.3 The case G = F4, p = 2 |
|
|
330 | (2) |
|
|
332 | (1) |
|
20.5 Proofs of the results 17.1 - 17.10 |
|
|
332 | (9) |
|
Chapter 21 Proofs of Theorems 1, 2 and Corollaries 3 - 8 |
|
|
341 | (10) |
|
Chapter 22 Tables of nilpotent and unipotent classes in the exceptional groups |
|
|
351 | (22) |
|
22.1 Classes and centralizers in exceptional algebraic groups |
|
|
351 | (1) |
|
22.2 Unipotent classes and centralizers in finite exceptional groups |
|
|
351 | (1) |
|
|
352 | (21) |
Bibliography |
|
373 | (4) |
Glossary of symbols |
|
377 | (2) |
Index |
|
379 | |