Muutke küpsiste eelistusi

E-raamat: Universal Algebra and Applications in Theoretical Computer Science

(University of Lethbridge, Lethbridge, Canada), (Universitat Potsdam, Potsdam, Germany)
  • Formaat: 383 pages
  • Ilmumisaeg: 03-Oct-2018
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781351990172
  • Formaat - EPUB+DRM
  • Hind: 143,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 383 pages
  • Ilmumisaeg: 03-Oct-2018
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781351990172

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This graduate textbook develops approaches to the study of universal algebra, also known as general algebra, that involve subalgebras, homomorphisms, product algebras, Galois connections, and identities. Denecke (Potsdam University) and Wismuth (University of Lethbridge) then apply the concepts to term rewriting systems and algebraic machines, and present the main ideas of Malcev-type conditions and tame congruence theory. Annotation (c) Book News, Inc., Portland, OR (booknews.com)

Over the past 20 years, the emergence of clone theory, hyperequational theory, commutator theory and tame congruence theory has led to a growth of universal algebra both in richness and in applications, especially in computer science. Yet most of the classic books on the subject are long out of print and, to date, no other book has integrated these theories with the long-established work that supports them.

Universal Algebra and Applications in Theoretical Computer Science introduces the basic concepts of universal algebra and surveys some of the newer developments in the field. The first half of the book provides a solid grounding in the core material. A leisurely pace, careful exposition, numerous examples, and exercises combine to form an introduction to the subject ideal for beginning graduate students or researchers from other areas. The second half of the book focuses on applications in theoretical computer science and advanced topics, including Mal'cev conditions, tame congruence theory, clones, and commutators.

The impact of the advances in universal algebra on computer science is just beginning to be realized, and the field will undoubtedly continue to grow and mature. Universal Algebra and Applications in Theoretical Computer Science forms an outstanding text and offers a unique opportunity to build the foundation needed for further developments in its theory and in its computer science applications.
Introduction v
Basic Concepts
1(30)
Algebras
1(3)
Examples
4(9)
Subalgebras
13(8)
Congruence Relations and Quotients
21(6)
Exercises
27(4)
Galois Connections and Closures
31(16)
Closure Operators
32(5)
Galois Connections
37(5)
Concept Analysis
42(2)
Exercises
44(3)
Homomorphisms and Isomorphisms
47(16)
The Homomorphism Theorem
49(9)
The Isomorphism Theorems
58(3)
Exercises
61(2)
Direct and Subdirect Products
63(12)
Direct Products
63(5)
Subdirect Products
68(4)
Exercises
72(3)
Terms, Trees, and Polynomials
75(16)
Terms and Trees
76(6)
Term Operations
82(3)
Polynomials and Polynomial Operations
85(3)
Exercises
88(3)
Identities and Varieties
91(24)
The Galois Connection (Id, Mod)
91(4)
Fully Invariant Congruence Relations
95(2)
The Algebraic Consequence Relation
97(1)
Relatively Free Algebras
98(3)
Varieties
101(8)
The Lattice of All Varieties
109(1)
Finite Axiomatizability
110(3)
Exercises
113(2)
Term Rewriting Systems
115(32)
Confluence
116(7)
Reduction Systems
123(6)
Term Rewriting
129(12)
Termination of Term Rewriting Systems
141(4)
Exercises
145(2)
Algebraic Machines
147(46)
Regular Languages
148(2)
Finite Automata
150(9)
Algebraic Operations on Finite Automata
159(6)
Tree Recognizers
165(4)
Regular Tree Grammars
169(5)
Operations on Tree Languages
174(2)
Minimal Tree Recognizers
176(6)
Tree Transducers
182(3)
Turing Machines
185(2)
Undecidable Problems
187(4)
Exercises
191(2)
Mal'cev-Type Conditions
193(22)
Congruence Permutability
193(2)
Congruence Distributivity
195(6)
Arithmetical Varieties
201(2)
n-Modularity and n-Permutability
203(2)
Congruence Regular Varieties
205(1)
Two-Element Algebras
206(7)
Exercises
213(2)
Clones and Completeness
215(36)
Clones as Algebraic Structures
215(2)
Operations and Relations
217(2)
The Lattice of All Boolean Clones
219(9)
The Functional Completeness Problem
228(3)
Primal Algebras
231(9)
Different Generalizations of Primality
240(5)
Preprimal Algebras
245(4)
Exercises
249(2)
Tame Congruence Theory
251(38)
Minimal Algebras
251(11)
Tame Congruence Relations
262(7)
Permutation Algebras
269(7)
The Types of Minimal Algebras
276(5)
Mal'cev Conditions and Omitting Types
281(5)
Residually Small Varieties
286(1)
Exercises
287(2)
Term Condition and Commutator
289(12)
The Term Condition
289(4)
The Commutator
293(6)
Exercises
299(2)
Complete Sublattices
301(24)
Conjugate Pairs of Closure Operators
301(7)
Galois Closed Subrelations
308(8)
Closure Operators on Complete Lattice
316(7)
Exercises
323(2)
G-Clones and M-Solid Varieties
325(22)
G-Clones
325(6)
H-Clones
331(3)
M-Solid Varieties
334(8)
Intervals in the Lattice L(τ)
342(3)
Exercises
345(2)
Hypersubstitutions and Machines
347(16)
The Hyperunification Problem
347(2)
Hyper Tree Recognizers
349(8)
Tree Transformations
357(4)
Exercises
361(2)
Bibliography 363(10)
Index 373


Denecke, Klaus; Wismath, Shelly L.