Preface |
|
xiii | |
Acknowledgments |
|
xxi | |
I Concepts and Framework |
|
1 | (112) |
|
|
3 | (46) |
|
|
3 | (1) |
|
1.2 Definition of Urban Computing |
|
|
4 | (1) |
|
|
5 | (5) |
|
|
5 | (1) |
|
1.3.2 Functions of Each Layer |
|
|
5 | (5) |
|
1.4 Key Urban-Computing Challenges |
|
|
10 | (18) |
|
1.4.1 Urban-Sensing Challenges |
|
|
10 | (5) |
|
1.4.2 Urban Data Management Challenges |
|
|
15 | (2) |
|
1.4.3 Urban Data Analytics Challenges |
|
|
17 | (5) |
|
1.4.4 Urban Service Challenges |
|
|
22 | (6) |
|
|
28 | (11) |
|
1.5.1 Taxonomy of Urban Data |
|
|
28 | (2) |
|
|
30 | (1) |
|
1.5.3 Traffic Data on Road Networks |
|
|
31 | (2) |
|
|
33 | (1) |
|
|
34 | (1) |
|
1.5.6 Environmental-Monitoring Data |
|
|
35 | (2) |
|
1.5.7 Social Network Data |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
39 | (1) |
|
|
39 | (2) |
|
|
41 | (8) |
|
2 Urban-Computing Applications |
|
|
49 | (64) |
|
|
49 | (1) |
|
2.2 Urban Computing for Urban Planning |
|
|
49 | (9) |
|
2.2.1 Gleaning Underlying Problems in Transportation Networks |
|
|
49 | (3) |
|
2.2.2 Discovering Functional Regions |
|
|
52 | (2) |
|
2.2.3 Detecting a City's Boundaries |
|
|
54 | (1) |
|
2.2.4 Facility and Resource Deployment |
|
|
55 | (3) |
|
2.3 Urban Computing for Transportation Systems |
|
|
58 | (12) |
|
2.3.1 Improving Driving Experiences |
|
|
58 | (3) |
|
2.3.2 Improving Taxi Services |
|
|
61 | (4) |
|
2.3.3 Improving Bus Services |
|
|
65 | (1) |
|
|
66 | (1) |
|
2.3.5 Bike-Sharing Systems |
|
|
67 | (3) |
|
2.4 Urban Computing for the Environment |
|
|
70 | (11) |
|
|
71 | (4) |
|
|
75 | (3) |
|
|
78 | (3) |
|
2.5 Urban Computing for Urban Energy Consumption |
|
|
81 | (3) |
|
|
81 | (2) |
|
2.5.2 Electricity Consumption |
|
|
83 | (1) |
|
2.6 Urban Computing for Social Applications |
|
|
84 | (4) |
|
2.6.1 Concepts of Location-Based Social Networks |
|
|
84 | (1) |
|
2.6.2 Understanding Users in Location-Based Social Networks |
|
|
85 | (1) |
|
2.6.3 Location Recommendations |
|
|
85 | (3) |
|
2.7 Urban Computing for the Economy |
|
|
88 | (3) |
|
2.7.1 Location Selection for Businesses |
|
|
88 | (1) |
|
2.7.2 Optimizing Urban Logistics |
|
|
89 | (2) |
|
2.8 Urban Computing for Public Safety and Security |
|
|
91 | (5) |
|
2.8.1 Detecting Urban Anomalies |
|
|
91 | (4) |
|
2.8.2 Predicting the Flow of Crowds |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
97 | (16) |
II Urban Sensing and Data Acquisition |
|
113 | (42) |
|
|
115 | (40) |
|
|
115 | (6) |
|
3.1.1 Four Paradigms of Urban Sensing |
|
|
115 | (4) |
|
3.1.2 General Framework of Urban Sensing |
|
|
119 | (2) |
|
3.2 Sensor and Facility Deployment |
|
|
121 | (12) |
|
3.2.1 Finding Optimal Meeting Points |
|
|
121 | (4) |
|
3.2.2 Maximizing Coverage |
|
|
125 | (4) |
|
3.2.3 Learning-to-Rank Candidates |
|
|
129 | (3) |
|
3.2.4 Minimizing Uncertainty |
|
|
132 | (1) |
|
3.3 Human-Centric Urban Sensing |
|
|
133 | (6) |
|
|
134 | (2) |
|
3.3.2 Participant Recruitment and Task Design |
|
|
136 | (3) |
|
3.4 Filling Missing Values |
|
|
139 | (11) |
|
3.4.1 Problem and Challenges |
|
|
139 | (2) |
|
|
141 | (4) |
|
|
145 | (3) |
|
3.4.4 Spatiotemporal Models |
|
|
148 | (2) |
|
|
150 | (1) |
|
|
150 | (5) |
III Urban Data Management |
|
155 | (150) |
|
4 Spatiotemporal Data Management |
|
|
157 | (62) |
|
|
157 | (4) |
|
|
157 | (1) |
|
|
158 | (1) |
|
|
158 | (3) |
|
4.1.4 Retrieval Algorithms |
|
|
161 | (1) |
|
|
161 | (6) |
|
4.2.1 Point-Based Spatial Static Data |
|
|
161 | (2) |
|
4.2.2 Point-Based Spatial Time Series Data |
|
|
163 | (1) |
|
4.2.3 Point-Based Spatiotemporal Data |
|
|
163 | (1) |
|
4.2.4 Network-Based Spatial Static Data |
|
|
164 | (1) |
|
4.2.5 Network-Based Spatial Time Series Data |
|
|
165 | (1) |
|
4.2.6 Network-Based Spatiotemporal Data |
|
|
165 | (2) |
|
4.3 Spatial Data Management |
|
|
167 | (13) |
|
4.3.1 Grid-Based Spatial Index |
|
|
168 | (1) |
|
4.3.2 Quadtree-Based Spatial Index |
|
|
169 | (3) |
|
4.3.3 K-D Tree-Based Spatial Index |
|
|
172 | (3) |
|
4.3.4 R-Tree-Based Spatial Index |
|
|
175 | (5) |
|
4.4 Spatiotemporal Data Management |
|
|
180 | (18) |
|
4.4.1 Managing Spatial Static and Temporal Dynamic Data |
|
|
180 | (3) |
|
4.4.2 Moving-Object Databases |
|
|
183 | (6) |
|
4.4.3 Trajectory Data Management |
|
|
189 | (9) |
|
4.5 Hybrid Indexes for Managing Multiple Datasets |
|
|
198 | (15) |
|
4.5.1 Queries and Motivations |
|
|
198 | (2) |
|
|
200 | (10) |
|
4.5.3 Indexes for Managing Multiple Datasets |
|
|
210 | (3) |
|
|
213 | (1) |
|
|
214 | (5) |
|
5 Introduction to Cloud Computing |
|
|
219 | (44) |
|
|
219 | (2) |
|
|
221 | (14) |
|
|
221 | (2) |
|
|
223 | (10) |
|
|
233 | (2) |
|
|
235 | (20) |
|
|
236 | (1) |
|
|
237 | (3) |
|
|
240 | (15) |
|
|
255 | (4) |
|
|
256 | (1) |
|
|
257 | (1) |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
259 | (4) |
|
6 Managing Spatiotemporal Data in the Cloud |
|
|
263 | (42) |
|
|
263 | (4) |
|
|
263 | (2) |
|
6.1.2 General Data Management Schemes on the Cloud |
|
|
265 | (2) |
|
6.2 Managing Point-Based Data |
|
|
267 | (17) |
|
6.2.1 Managing Point-Based Spatiotemporal Static Data |
|
|
267 | (5) |
|
6.2.2 Managing Point-Based Spatial Static and Temporal Dynamic Data |
|
|
272 | (6) |
|
6.2.3 Managing Point-Based Spatiotemporal Dynamic Data |
|
|
278 | (6) |
|
6.3 Managing Network-Based Data |
|
|
284 | (17) |
|
6.3.1 Managing Spatiotemporal Static Networks |
|
|
284 | (6) |
|
6.3.2 Managing Network-Based Spatial Static and Temporally Dynamic Data |
|
|
290 | (4) |
|
6.3.3 Managing Network-Based Spatiotemporal Dynamic Data |
|
|
294 | (7) |
|
6.4 Urban Big-Data Platform |
|
|
301 | (2) |
|
|
303 | (2) |
IV Urban Data Analytics |
|
305 | (294) |
|
7 Fundamental Data-Mining Techniques for Urban Data |
|
|
307 | (84) |
|
|
307 | (7) |
|
7.1.1 General Framework of Data Mining |
|
|
307 | (2) |
|
7.1.2 Relationship between Data Mining and Related Technologies |
|
|
309 | (5) |
|
|
314 | (12) |
|
|
314 | (3) |
|
7.2.2 Data Transformation |
|
|
317 | (2) |
|
|
319 | (7) |
|
7.3 Frequent Pattern Mining and Association Rules |
|
|
326 | (19) |
|
|
327 | (2) |
|
7.3.2 Frequent Itemset Mining Methods |
|
|
329 | (5) |
|
7.3.3 Sequential Pattern Mining |
|
|
334 | (7) |
|
7.3.4 Frequent Subgraph Pattern Mining |
|
|
341 | (4) |
|
|
345 | (11) |
|
|
345 | (2) |
|
7.4.2 Partitioning Clustering Methods |
|
|
347 | (2) |
|
7.4.3 Density-Based Clustering |
|
|
349 | (5) |
|
7.4.4 Hierarchical Clustering Methods |
|
|
354 | (2) |
|
|
356 | (14) |
|
|
356 | (3) |
|
7.5.2 Naive Bayesian Classification |
|
|
359 | (1) |
|
|
360 | (4) |
|
7.5.4 Support Vector Machines |
|
|
364 | (2) |
|
7.5.5 Classification with Imbalanced Data |
|
|
366 | (4) |
|
|
370 | (6) |
|
|
370 | (3) |
|
|
373 | (1) |
|
|
374 | (2) |
|
7.7 Outlier and Anomaly Detection |
|
|
376 | (8) |
|
7.7.1 Proximity-Based Outlier Detection |
|
|
377 | (3) |
|
7.7.2 Statistic-Based Outlier Detection |
|
|
380 | (4) |
|
|
384 | (1) |
|
|
385 | (6) |
|
8 Advanced Machine-Learning Techniques for Spatiotemporal Data |
|
|
391 | (100) |
|
|
391 | (1) |
|
8.2 Unique Properties of Spatiotemporal Data |
|
|
392 | (4) |
|
8.2.1 Spatial Properties of Spatiotemporal Data |
|
|
392 | (2) |
|
8.2.2 Temporal Properties |
|
|
394 | (2) |
|
8.3 Collaborative Filtering |
|
|
396 | (8) |
|
8.3.1 Basic Models: User Based and Item Based |
|
|
396 | (3) |
|
8.3.2 Collaborative Filtering for Spatiotemporal Data |
|
|
399 | (5) |
|
|
404 | (7) |
|
8.4.1 Basic Matrix Factorization Methods |
|
|
404 | (2) |
|
8.4.2 Matrix Factorization for Spatiotemporal Data |
|
|
406 | (5) |
|
|
411 | (10) |
|
8.5.1 Basic Concepts of Tensors |
|
|
411 | (2) |
|
8.5.2 Methods of Tensor Decomposition |
|
|
413 | (3) |
|
8.5.3 Tensor Decomposition for Spatiotemporal Data |
|
|
416 | (5) |
|
8.6 Probabilistic Graphical Models |
|
|
421 | (33) |
|
|
421 | (2) |
|
|
423 | (10) |
|
8.6.3 Markov Random Field |
|
|
433 | (1) |
|
8.6.4 Bayesian Networks for Spatiotemporal Data |
|
|
433 | (15) |
|
8.6.5 Markov Networks for Spatiotemporal Data |
|
|
448 | (6) |
|
|
454 | (17) |
|
8.7.1 Artificial Neural Networks |
|
|
455 | (4) |
|
8.7.2 Convolutional Neural Networks |
|
|
459 | (5) |
|
8.7.3 Recurrent Neural Networks |
|
|
464 | (3) |
|
8.7.4 Deep Learning for Spatiotemporal Data |
|
|
467 | (4) |
|
8.8 Reinforcement Learning |
|
|
471 | (13) |
|
8.8.1 Concepts of Reinforcement Learning |
|
|
471 | (3) |
|
8.8.2 Tabular Action-Value Methods |
|
|
474 | (7) |
|
8.8.3 Approximate Methods |
|
|
481 | (3) |
|
|
484 | (1) |
|
|
485 | (6) |
|
9 Cross-Domain Knowledge Fusion |
|
|
491 | (44) |
|
|
491 | (4) |
|
9.1.1 Relationship to Traditional Data Integration |
|
|
493 | (1) |
|
9.1.2 Relationship to Heterogeneous Information Networks |
|
|
494 | (1) |
|
9.2 Stage-Based Knowledge Fusion |
|
|
495 | (3) |
|
9.3 Feature-Based Knowledge Fusion |
|
|
498 | (6) |
|
9.3.1 Feature Concatenation with Regularization |
|
|
498 | (4) |
|
9.3.2 Deep Learning-Based Knowledge Fusion |
|
|
502 | (2) |
|
9.4 Semantic Meaning-Based Knowledge Fusion |
|
|
504 | (22) |
|
9.4.1 Multi-View-Based Knowledge Fusion |
|
|
505 | (6) |
|
9.4.2 Similarity-Based Knowledge Fusion |
|
|
511 | (6) |
|
9.4.3 Probabilistic Dependency-Based Knowledge Fusion |
|
|
517 | (1) |
|
9.4.4 Transfer Learning-Based Knowledge Fusion |
|
|
518 | (8) |
|
9.5 Comparison between Different Fusion Methods |
|
|
526 | (3) |
|
9.5.1 Volume, Properties, and Insight of Datasets |
|
|
527 | (1) |
|
9.5.2 The Goal of a Machine-Learning Task |
|
|
528 | (1) |
|
9.5.3 Learning Approach of Machine-Learning Algorithms |
|
|
528 | (1) |
|
9.5.4 Efficiency and Scalability |
|
|
528 | (1) |
|
|
529 | (1) |
|
|
530 | (5) |
|
10 Advanced Topics in Urban Data Analytics |
|
|
535 | (64) |
|
10.1 How to Select Useful Datasets |
|
|
535 | (7) |
|
10.1.1 Understanding Target Problems |
|
|
536 | (1) |
|
10.1.2 Insights behind Data |
|
|
537 | (1) |
|
10.1.3 Validating Assumptions |
|
|
538 | (4) |
|
10.2 Trajectory Data Mining |
|
|
542 | (34) |
|
|
545 | (1) |
|
10.2.2 Trajectory Preprocessing |
|
|
546 | (10) |
|
10.2.3 Trajectory Data Management |
|
|
556 | (1) |
|
10.2.4 Uncertainty in a Trajectory |
|
|
556 | (4) |
|
10.2.5 Trajectory Pattern Mining |
|
|
560 | (6) |
|
10.2.6 Trajectory Classification |
|
|
566 | (2) |
|
10.2.7 Anomalies Detection from Trajectories |
|
|
568 | (2) |
|
10.2.8 Transferring Trajectories to Other Representations |
|
|
570 | (6) |
|
10.3 Combining Machine Learning with Data Management |
|
|
576 | (11) |
|
|
576 | (4) |
|
10.3.2 Boosting Machine Learning with Indexing Structures |
|
|
580 | (4) |
|
10.3.3 Scale Down Candidates for Machine Learning |
|
|
584 | (1) |
|
10.3.4 Derive Bounds to Prune Computing Spaces for Machine Learning |
|
|
585 | (2) |
|
10.4 Interactive Visual Data Analytics |
|
|
587 | (1) |
|
10.4.1 Incorporating Multiple Complex Factors |
|
|
587 | (1) |
|
10.4.2 Adjusting Parameters without Prior Knowledge |
|
|
587 | (1) |
|
10.4.3 Drilling Down into Results |
|
|
588 | (1) |
|
|
588 | (1) |
|
|
589 | (10) |
About the Author |
|
599 | (2) |
Index |
|
601 | |