Preface |
|
xv | |
|
1 Thermochromic VO2 for Energy-Efficient Glazing: An Introduction |
|
|
1 | (34) |
|
|
|
2 | (2) |
|
1.2 Thermal, Solar, and Luminous Radiation |
|
|
4 | (1) |
|
1.3 Thermochromic Materials, Notably Vanadium Dioxide |
|
|
5 | (4) |
|
1.4 Thin Films and Nanoparticles of VO2: Some Challenges and Opportunities |
|
|
9 | (4) |
|
1.5 Toward Practical VO2-Based Thermochromic Glazing: A Multistep Approach |
|
|
13 | (10) |
|
1.5.1 Achieving Long-Term Durability |
|
|
13 | (3) |
|
1.5.2 Having the Thermochromic Shift at Room Temperature |
|
|
16 | (1) |
|
1.5.3 Enhancing the Luminous Transmittance |
|
|
17 | (2) |
|
1.5.4 Boosting the Solar Energy Modulation |
|
|
19 | (2) |
|
1.5.5 Performance Limits for Thermochromic Glazing |
|
|
21 | (2) |
|
1.6 Some Conclusions and Comments |
|
|
23 | (12) |
|
2 Effect of Doping on the Thermochromic Performance of VO2 |
|
|
35 | (28) |
|
|
|
|
|
|
36 | (1) |
|
2.2 Experimental Investigations |
|
|
36 | (4) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
39 | (1) |
|
2.3 Simulations of Elemental Doping in VO2 |
|
|
40 | (13) |
|
2.4 Concluding Remarks and Outlook |
|
|
53 | (10) |
|
3 VO2 Nanocomposite Coatings for Smart Windows |
|
|
63 | (38) |
|
|
|
3.1 Optical Simulation of VO2-Based NC Coatings |
|
|
64 | (8) |
|
3.1.1 Effective-Medium Theory |
|
|
64 | (1) |
|
3.1.1.1 VO2-based NC coatings |
|
|
64 | (3) |
|
3.1.1.2 VO2-based core/shell structures |
|
|
67 | (2) |
|
|
69 | (1) |
|
3.1.3 Accuracy of a Theoretical Simulation |
|
|
69 | (3) |
|
3.2 Preparation of VO2-Based NC Coatings for Luminous Transmittance and Solar Energy Modulation Ability Improvement |
|
|
72 | (10) |
|
3.2.1 Nanoporous VO2 Thin Films |
|
|
73 | (1) |
|
3.2.2 VO2-Based Inorganic NC Coatings |
|
|
73 | (3) |
|
3.2.3 VO2-Based Organic Nanocomposite Coating |
|
|
76 | (6) |
|
3.3 V02-Based NC Coatings Modified with Other Light Functional Materials |
|
|
82 | (10) |
|
3.3.1 Adjustment of Other Optical Performance of VO2-Based NC Coatings |
|
|
82 | (1) |
|
3.3.1.1 VO2-based NC coatings with color modulation |
|
|
82 | (1) |
|
3.3.1.2 Improvement of solar-heat shielding ability (Ts) for V02 NPs |
|
|
83 | (1) |
|
3.3.1.3 VO2 NC coatings with low emission |
|
|
84 | (1) |
|
3.3.2 VO2-Based NC Coatings with Infrared and Visible-Light Utilization |
|
|
85 | (1) |
|
3.3.2.1 VO2/hydrogel hybrid nanothermochromic material with ultrahigh solar modulation and luminous transmission |
|
|
85 | (4) |
|
3.3.2.2 VO2 NC coating with electrochromism-thermochromism dual-response properties |
|
|
89 | (1) |
|
3.3.2.3 VO2 NC coatings for energy saving and generation |
|
|
90 | (2) |
|
|
92 | (9) |
|
4 Antireflection for the Performance of VO2 Thermochromic Thin Films |
|
|
101 | (22) |
|
|
4.1 The Principle of Antireflection |
|
|
101 | (1) |
|
4.2 Antireflection on a VO2 Thin Film |
|
|
102 | (17) |
|
4.2.1 Single-Layer and Double-Layer AR Coatings |
|
|
102 | (2) |
|
4.2.2 Multilayer Antireflection Coating |
|
|
104 | (2) |
|
4.2.3 Gradient AR Coatings |
|
|
106 | (3) |
|
4.2.4 Nanostructure AR Coating |
|
|
109 | (10) |
|
|
119 | (4) |
|
5 Controllable Synthesis of Porous Vanadium Dioxide Nanostructures |
|
|
123 | (16) |
|
|
|
|
|
|
124 | (1) |
|
5.2 Porous Design for Property Enhancement |
|
|
124 | (1) |
|
5.3 Approaches for Porosity Construction |
|
|
125 | (8) |
|
5.3.1 Colloidal Lithography Assembly |
|
|
125 | (3) |
|
5.3.2 Polymer-Assisted Deposition |
|
|
128 | (3) |
|
5.3.3 Dual-Phase Transformation |
|
|
131 | (1) |
|
5.3.4 Freeze-Drying Preparation |
|
|
131 | (2) |
|
5.4 Conclusion and Outlook |
|
|
133 | (6) |
|
6 Biomimetic, Gridded Structure, and Hybridation |
|
|
139 | (40) |
|
|
|
|
|
139 | (5) |
|
|
144 | (11) |
|
|
155 | (15) |
|
6.3.1 Enhance Thermochromic Properties |
|
|
155 | (1) |
|
6.3.1.1 VO2/hydrogel composites |
|
|
156 | (2) |
|
6.3.1.2 Ion liquids/VO2 composites |
|
|
158 | (2) |
|
6.3.1.3 Liquid crystals/VO2 composites |
|
|
160 | (2) |
|
6.3.2 Increasing Stability |
|
|
162 | (1) |
|
6.3.2.1 Transparent host material/VO2 composite |
|
|
162 | (1) |
|
6.3.2.2 VO2/SiO2 core-shell composite |
|
|
163 | (2) |
|
|
165 | (1) |
|
6.3.3.1 Self-cleaning and wettability smart windows |
|
|
165 | (2) |
|
6.3.3.2 Energy-generating VO2 smart windows |
|
|
167 | (2) |
|
6.3.3.3 Dual-response electrothermal VO2 smart window |
|
|
169 | (1) |
|
|
170 | (9) |
|
7 Hydrothermal Synthesis of Thermochromic VO2 for Energy-Efficient Windows |
|
|
179 | (36) |
|
|
|
|
|
179 | (3) |
|
7.2 Hydrothermal Synthesis of VO2 Polymorphs |
|
|
182 | (6) |
|
7.3 Hydrothermal Synthesis of VO2 Powders |
|
|
188 | (11) |
|
7.3.1 0D VO2 Nanoparticles |
|
|
188 | (1) |
|
7.3.1.1 One-step hydrothermal method |
|
|
189 | (2) |
|
7.3.1.2 Hydrothermal method combined with annealing |
|
|
191 | (2) |
|
|
193 | (3) |
|
|
196 | (1) |
|
7.3.4 3D VO2 Microstructure |
|
|
196 | (2) |
|
7.3.5 VO2 Smart Windows with Hydrothermal Powders |
|
|
198 | (1) |
|
7.4 Hydrothermal Synthesis of VO2 Films |
|
|
199 | (3) |
|
7.5 Hydrothermal Derivation Technology |
|
|
202 | (2) |
|
7.5.1 Microwave-Hydrothermal Method |
|
|
202 | (2) |
|
7.5.2 Continuous Hydrothermal Flow Method |
|
|
204 | (1) |
|
7.6 Conclusion and Perspectives |
|
|
204 | (11) |
|
8 Chemical Vapor Deposition and Its Application in VO2 Synthesis |
|
|
215 | (36) |
|
|
|
|
|
|
215 | (1) |
|
8.2 Definition of Chemical Vapor Deposition |
|
|
216 | (1) |
|
8.3 Advantage and Limitation of CVD |
|
|
217 | (1) |
|
8.4 Commonly Used CVD Methods |
|
|
218 | (3) |
|
8.4.1 Atmospheric Pressure Chemical Vapor Deposition |
|
|
218 | (1) |
|
8.4.2 Metal-Organic Chemical Vapor Deposition |
|
|
218 | (1) |
|
8.4.3 Plasma-Enhanced Chemical Vapor Deposition |
|
|
219 | (1) |
|
8.4.4 Aerosol-Assisted Chemical Vapor Deposition |
|
|
220 | (1) |
|
8.4.5 Atomic Layer Deposition |
|
|
221 | (1) |
|
8.5 Application of CVD in VO2 Deposition |
|
|
221 | (15) |
|
8.5.1 Parameter Control in APCVD Growth of a VO2 Thin Film |
|
|
221 | (1) |
|
8.5.1.1 Parameters that affect film growth in an APCVD system with an inorganic vanadium precursor |
|
|
222 | (2) |
|
8.5.1.2 Parameters that affect film growth in an APCVD system with an organic vanadium precursor |
|
|
224 | (2) |
|
8.5.2 Parameter Control in MOCVD Growth of a VO2 Thin Film |
|
|
226 | (1) |
|
8.5.3 Parameter Control in PECVD Growth of a VO2 Thin Film |
|
|
227 | (1) |
|
8.5.4 Parameter Control in AACVD Growth of a VO2 Thin Film |
|
|
228 | (1) |
|
8.5.5 Parameter Control in Hybrid AA/APCVD Growth of a VO2 Thin Film |
|
|
229 | (1) |
|
8.5.6 Parameter Control in ALD Growth of a VO2 Thin Film |
|
|
230 | (6) |
|
8.6 Application of Computer Simulation to the VO2 Synthesis Process Optimization |
|
|
236 | (8) |
|
8.6.1 Governing Equations of Computational Fluid Dynamics Modeling |
|
|
236 | (3) |
|
8.6.2 Thermodynamics of an APCVD Reactor |
|
|
239 | (2) |
|
8.6.3 CVD Reactor Geometry |
|
|
241 | (1) |
|
8.6.4 Methodologies of CFD Simulation Steps Analysis |
|
|
242 | (2) |
|
|
244 | (7) |
|
9 Physical Vapor Deposition and Its Application in Vanadium Dioxide Synthesis |
|
|
251 | (76) |
|
|
|
|
|
|
9.1 Reactive Pulse Laser Deposition |
|
|
252 | (18) |
|
9.1.1 Oxygen Partial Pressure |
|
|
253 | (2) |
|
9.1.2 Substrate Temperature |
|
|
255 | (1) |
|
|
256 | (14) |
|
9.2 Ion Plating/Ion Implantation |
|
|
270 | (4) |
|
|
274 | (1) |
|
9.4 Electron Beam Deposition |
|
|
275 | (4) |
|
9.5 Molecular Beam Epitaxy |
|
|
279 | (3) |
|
|
282 | (45) |
|
|
282 | (3) |
|
9.6.2 Reactive Direct Current Magnetron Sputtering |
|
|
285 | (1) |
|
9.6.2.1 Without a postannealing process |
|
|
286 | (3) |
|
9.6.2.2 With a postannealing process |
|
|
289 | (3) |
|
9.6.3 Reactive RF-Magnetron Sputtering |
|
|
292 | (2) |
|
9.6.4 Reactive Pulsed DC Magnetron Sputtering |
|
|
294 | (1) |
|
9.6.5 Reactive High-Power Impulse Magnetron Sputtering |
|
|
294 | (2) |
|
9.6.6 Inductively Coupled Plasma-Assisted Sputtering |
|
|
296 | (1) |
|
9.6.7 Inverted Cylindrical Magnetron Sputtering |
|
|
297 | (1) |
|
9.6.8 Ion-Beam-Assisted Sputtering |
|
|
298 | (1) |
|
9.6.9 Nonreactive Sputtering Methods |
|
|
298 | (1) |
|
9.6.9.1 Ceramic target system |
|
|
298 | (1) |
|
9.6.9.2 Vanadium target system with pure argon sputtering |
|
|
299 | (1) |
|
9.6.10 Modification to a Sputtering System for High-Performance VO2 films |
|
|
299 | (1) |
|
9.6.10.1 Low-temperature deposition of VO2 films by sputtering |
|
|
299 | (5) |
|
9.6.10.2 Transition temperature control of VO2 by element doping |
|
|
304 | (4) |
|
9.6.10.3 VO2 multilayer structure for high performance and multifunction |
|
|
308 | (19) |
|
10 Sol-Gel Synthesis of Thermochromic VO2 Coatings |
|
|
327 | (34) |
|
|
|
|
327 | (1) |
|
10.2 Fundamentals of the Sol-Gel Method |
|
|
328 | (1) |
|
10.3 Sol-Gel Process for VO2 Coatings |
|
|
329 | (12) |
|
10.3.1 Inorganic Sol-Gel Method |
|
|
332 | (6) |
|
10.3.2 Organic Sol-Gel Method |
|
|
338 | (3) |
|
10.4 Sol-Gel Strategies for Improved Thermochromic Properties |
|
|
341 | (14) |
|
|
342 | (8) |
|
10.4.2 VO2-Based Composite Coatings |
|
|
350 | (5) |
|
|
355 | (6) |
|
11 VO2-Based Smart Coatings with Long-Term Durability: Review and Perspective |
|
|
361 | (12) |
|
|
|
|
361 | (1) |
|
11.2 Enhanced Durability of VO2 Nanoparticles |
|
|
362 | (3) |
|
11.3 Protective Layers for VO2 Thin Films |
|
|
365 | (3) |
|
11.4 Summary and the Future |
|
|
368 | (5) |
|
12 Conclusions and Perspectives |
|
|
373 | (20) |
|
|
|
|
12.1 Reduce Transition Temperature; Enhance Visible Transmittance and Solar Modulation Ability |
|
|
375 | (2) |
|
|
377 | (2) |
|
|
379 | (1) |
|
|
380 | (1) |
|
|
381 | (2) |
|
12.6 Scaled-Up Production of VO2 Nanoparticles |
|
|
383 | (1) |
|
|
384 | (1) |
|
12.8 Combination of Thermochromic VO2 with Other Energy-Saving System and Other Functionalities |
|
|
385 | (2) |
|
|
387 | (6) |
Index |
|
393 | |