Muutke küpsiste eelistusi

E-raamat: Vanadium Dioxide-Based Thermochromic Smart Windows

Edited by , Edited by
  • Formaat: 416 pages
  • Ilmumisaeg: 27-May-2021
  • Kirjastus: Jenny Stanford Publishing
  • ISBN-13: 9781000393620
  • Formaat - EPUB+DRM
  • Hind: 180,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 416 pages
  • Ilmumisaeg: 27-May-2021
  • Kirjastus: Jenny Stanford Publishing
  • ISBN-13: 9781000393620

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The usage of building energy accounts for 30–40% of total energy consumption in developed countries, exceeding the amount for industry or transportation. Around 50% energy for building services is contributed by heating, ventilation, and air-conditioning (HVAC) systems. More importantly, both building and HVAC energy consumptions are predicted to increase in the next two decades. Windows are considered as the least energy-efficient components of buildings. Therefore, smart windows are becoming increasingly important as they are capable of reducing HVAC energy usage by tuning the transmitted sunlight in a smart and favoured way: blocking solar irradiation on hot days, while letting it pass through on cold days. Compared with other type of smart windows, thermochromic windows have the unique advantages of cost-effectiveness, rational stimulus, and passive response. This book covers fabrication of vanadium dioxide–based smart windows, discusses various strategies to enhance their performance, and shares perspectives from the top scientists in this particular field.

Preface xv
1 Thermochromic VO2 for Energy-Efficient Glazing: An Introduction
1(34)
Claes G. Granqvist
1.1 The Big Challenge
2(2)
1.2 Thermal, Solar, and Luminous Radiation
4(1)
1.3 Thermochromic Materials, Notably Vanadium Dioxide
5(4)
1.4 Thin Films and Nanoparticles of VO2: Some Challenges and Opportunities
9(4)
1.5 Toward Practical VO2-Based Thermochromic Glazing: A Multistep Approach
13(10)
1.5.1 Achieving Long-Term Durability
13(3)
1.5.2 Having the Thermochromic Shift at Room Temperature
16(1)
1.5.3 Enhancing the Luminous Transmittance
17(2)
1.5.4 Boosting the Solar Energy Modulation
19(2)
1.5.5 Performance Limits for Thermochromic Glazing
21(2)
1.6 Some Conclusions and Comments
23(12)
2 Effect of Doping on the Thermochromic Performance of VO2
35(28)
Ning Wang
Yuanyuan Cui
Yanfeng Gao
Yi Long
2.1 Introduction
36(1)
2.2 Experimental Investigations
36(4)
2.2.1 Mg Doping
36(1)
2.2.2 W Doping
37(1)
2.2.3 Sb Doping
38(1)
2.2.4 F Doping
38(1)
2.2.5 N Doping
39(1)
2.2.6 H Doping
39(1)
2.3 Simulations of Elemental Doping in VO2
40(13)
2.4 Concluding Remarks and Outlook
53(10)
3 VO2 Nanocomposite Coatings for Smart Windows
63(38)
Y. F. Gao
Z. Chen
3.1 Optical Simulation of VO2-Based NC Coatings
64(8)
3.1.1 Effective-Medium Theory
64(1)
3.1.1.1 VO2-based NC coatings
64(3)
3.1.1.2 VO2-based core/shell structures
67(2)
3.1.2 Four-Flux Method
69(1)
3.1.3 Accuracy of a Theoretical Simulation
69(3)
3.2 Preparation of VO2-Based NC Coatings for Luminous Transmittance and Solar Energy Modulation Ability Improvement
72(10)
3.2.1 Nanoporous VO2 Thin Films
73(1)
3.2.2 VO2-Based Inorganic NC Coatings
73(3)
3.2.3 VO2-Based Organic Nanocomposite Coating
76(6)
3.3 V02-Based NC Coatings Modified with Other Light Functional Materials
82(10)
3.3.1 Adjustment of Other Optical Performance of VO2-Based NC Coatings
82(1)
3.3.1.1 VO2-based NC coatings with color modulation
82(1)
3.3.1.2 Improvement of solar-heat shielding ability (Ts) for V02 NPs
83(1)
3.3.1.3 VO2 NC coatings with low emission
84(1)
3.3.2 VO2-Based NC Coatings with Infrared and Visible-Light Utilization
85(1)
3.3.2.1 VO2/hydrogel hybrid nanothermochromic material with ultrahigh solar modulation and luminous transmission
85(4)
3.3.2.2 VO2 NC coating with electrochromism-thermochromism dual-response properties
89(1)
3.3.2.3 VO2 NC coatings for energy saving and generation
90(2)
3.4 Conclusion
92(9)
4 Antireflection for the Performance of VO2 Thermochromic Thin Films
101(22)
Xiudi Xiao
4.1 The Principle of Antireflection
101(1)
4.2 Antireflection on a VO2 Thin Film
102(17)
4.2.1 Single-Layer and Double-Layer AR Coatings
102(2)
4.2.2 Multilayer Antireflection Coating
104(2)
4.2.3 Gradient AR Coatings
106(3)
4.2.4 Nanostructure AR Coating
109(10)
4.3 Conclusions
119(4)
5 Controllable Synthesis of Porous Vanadium Dioxide Nanostructures
123(16)
Ning Wang
Litao Kang
Yanfeng Gao
Yi Long
5.1 Introduction
124(1)
5.2 Porous Design for Property Enhancement
124(1)
5.3 Approaches for Porosity Construction
125(8)
5.3.1 Colloidal Lithography Assembly
125(3)
5.3.2 Polymer-Assisted Deposition
128(3)
5.3.3 Dual-Phase Transformation
131(1)
5.3.4 Freeze-Drying Preparation
131(2)
5.4 Conclusion and Outlook
133(6)
6 Biomimetic, Gridded Structure, and Hybridation
139(40)
Yujie Ke
Yang Zhou
Yi Long
6.1 Biomimetic
139(5)
6.2 Grid Structures
144(11)
6.3 Hybridation
155(15)
6.3.1 Enhance Thermochromic Properties
155(1)
6.3.1.1 VO2/hydrogel composites
156(2)
6.3.1.2 Ion liquids/VO2 composites
158(2)
6.3.1.3 Liquid crystals/VO2 composites
160(2)
6.3.2 Increasing Stability
162(1)
6.3.2.1 Transparent host material/VO2 composite
162(1)
6.3.2.2 VO2/SiO2 core-shell composite
163(2)
6.3.3 Multifunction
165(1)
6.3.3.1 Self-cleaning and wettability smart windows
165(2)
6.3.3.2 Energy-generating VO2 smart windows
167(2)
6.3.3.3 Dual-response electrothermal VO2 smart window
169(1)
6.4 Conclusions
170(9)
7 Hydrothermal Synthesis of Thermochromic VO2 for Energy-Efficient Windows
179(36)
Ming Li
Guanghai Li
Yi Long
7.1 Introduction
179(3)
7.2 Hydrothermal Synthesis of VO2 Polymorphs
182(6)
7.3 Hydrothermal Synthesis of VO2 Powders
188(11)
7.3.1 0D VO2 Nanoparticles
188(1)
7.3.1.1 One-step hydrothermal method
189(2)
7.3.1.2 Hydrothermal method combined with annealing
191(2)
7.3.2 ID VO2 Nanowires
193(3)
7.3.3 2D VO2 Nanosheets
196(1)
7.3.4 3D VO2 Microstructure
196(2)
7.3.5 VO2 Smart Windows with Hydrothermal Powders
198(1)
7.4 Hydrothermal Synthesis of VO2 Films
199(3)
7.5 Hydrothermal Derivation Technology
202(2)
7.5.1 Microwave-Hydrothermal Method
202(2)
7.5.2 Continuous Hydrothermal Flow Method
204(1)
7.6 Conclusion and Perspectives
204(11)
8 Chemical Vapor Deposition and Its Application in VO2 Synthesis
215(36)
Shancheng Wang
Dimitra Vernardou
Charalampos Drosos
Yi Long
8.1 Introduction
215(1)
8.2 Definition of Chemical Vapor Deposition
216(1)
8.3 Advantage and Limitation of CVD
217(1)
8.4 Commonly Used CVD Methods
218(3)
8.4.1 Atmospheric Pressure Chemical Vapor Deposition
218(1)
8.4.2 Metal-Organic Chemical Vapor Deposition
218(1)
8.4.3 Plasma-Enhanced Chemical Vapor Deposition
219(1)
8.4.4 Aerosol-Assisted Chemical Vapor Deposition
220(1)
8.4.5 Atomic Layer Deposition
221(1)
8.5 Application of CVD in VO2 Deposition
221(15)
8.5.1 Parameter Control in APCVD Growth of a VO2 Thin Film
221(1)
8.5.1.1 Parameters that affect film growth in an APCVD system with an inorganic vanadium precursor
222(2)
8.5.1.2 Parameters that affect film growth in an APCVD system with an organic vanadium precursor
224(2)
8.5.2 Parameter Control in MOCVD Growth of a VO2 Thin Film
226(1)
8.5.3 Parameter Control in PECVD Growth of a VO2 Thin Film
227(1)
8.5.4 Parameter Control in AACVD Growth of a VO2 Thin Film
228(1)
8.5.5 Parameter Control in Hybrid AA/APCVD Growth of a VO2 Thin Film
229(1)
8.5.6 Parameter Control in ALD Growth of a VO2 Thin Film
230(6)
8.6 Application of Computer Simulation to the VO2 Synthesis Process Optimization
236(8)
8.6.1 Governing Equations of Computational Fluid Dynamics Modeling
236(3)
8.6.2 Thermodynamics of an APCVD Reactor
239(2)
8.6.3 CVD Reactor Geometry
241(1)
8.6.4 Methodologies of CFD Simulation Steps Analysis
242(2)
8.7 Simulation Results
244(7)
9 Physical Vapor Deposition and Its Application in Vanadium Dioxide Synthesis
251(76)
Tuan Due Vu
Ping Jin
Zhang Chen
Yanfeng Gao
Yi Long
9.1 Reactive Pulse Laser Deposition
252(18)
9.1.1 Oxygen Partial Pressure
253(2)
9.1.2 Substrate Temperature
255(1)
9.1.3 Epitaxial Growth
256(14)
9.2 Ion Plating/Ion Implantation
270(4)
9.3 Thermal Evaporation
274(1)
9.4 Electron Beam Deposition
275(4)
9.5 Molecular Beam Epitaxy
279(3)
9.6 Sputtering
282(45)
9.6.1 Introduction
282(3)
9.6.2 Reactive Direct Current Magnetron Sputtering
285(1)
9.6.2.1 Without a postannealing process
286(3)
9.6.2.2 With a postannealing process
289(3)
9.6.3 Reactive RF-Magnetron Sputtering
292(2)
9.6.4 Reactive Pulsed DC Magnetron Sputtering
294(1)
9.6.5 Reactive High-Power Impulse Magnetron Sputtering
294(2)
9.6.6 Inductively Coupled Plasma-Assisted Sputtering
296(1)
9.6.7 Inverted Cylindrical Magnetron Sputtering
297(1)
9.6.8 Ion-Beam-Assisted Sputtering
298(1)
9.6.9 Nonreactive Sputtering Methods
298(1)
9.6.9.1 Ceramic target system
298(1)
9.6.9.2 Vanadium target system with pure argon sputtering
299(1)
9.6.10 Modification to a Sputtering System for High-Performance VO2 films
299(1)
9.6.10.1 Low-temperature deposition of VO2 films by sputtering
299(5)
9.6.10.2 Transition temperature control of VO2 by element doping
304(4)
9.6.10.3 VO2 multilayer structure for high performance and multifunction
308(19)
10 Sol-Gel Synthesis of Thermochromic VO2 Coatings
327(34)
Haibo Jin
Jingbo Li
10.1 Introduction
327(1)
10.2 Fundamentals of the Sol-Gel Method
328(1)
10.3 Sol-Gel Process for VO2 Coatings
329(12)
10.3.1 Inorganic Sol-Gel Method
332(6)
10.3.2 Organic Sol-Gel Method
338(3)
10.4 Sol-Gel Strategies for Improved Thermochromic Properties
341(14)
10.4.1 Doping
342(8)
10.4.2 VO2-Based Composite Coatings
350(5)
10.5 Conclusion
355(6)
11 VO2-Based Smart Coatings with Long-Term Durability: Review and Perspective
361(12)
Xun Cao
Tianci Chang
11.1 Introduction
361(1)
11.2 Enhanced Durability of VO2 Nanoparticles
362(3)
11.3 Protective Layers for VO2 Thin Films
365(3)
11.4 Summary and the Future
368(5)
12 Conclusions and Perspectives
373(20)
Yi Long
Yanfeng Gao
Xuchuan Jiang
12.1 Reduce Transition Temperature; Enhance Visible Transmittance and Solar Modulation Ability
375(2)
12.2 Color
377(2)
12.3 Emissivity
379(1)
12.4 Stability
380(1)
12.5 Toxicity
381(2)
12.6 Scaled-Up Production of VO2 Nanoparticles
383(1)
12.7 Process
384(1)
12.8 Combination of Thermochromic VO2 with Other Energy-Saving System and Other Functionalities
385(2)
12.9 Energy Calculation
387(6)
Index 393
Yi Long is a senior lecturer in the School of Materials Science and Engineering at Nanyang Technological University. She obtained her PhD from the University of Cambridge, UK. Her research focuses on nanostructured functional materials for different applications. She has successfully implemented technology transfer from lab to industry for hard-disk companies in her early career. Her recent research focuses on developing various functional materials by manipulation of the structure of nanoscale materials to achieve unusual properties and on energy-saving windows, flexbile electronics, and smart devices. Her work has been widely highlighted in top journals and different media.

Yanfeng Gao is the group leader of light/thermal-modulated materials at Shanghai University. From 2004 to 2012 he worked at the Shanghai Institute of Ceramics, CAS, Musashi Institute of Technology, and Nagoya University. Dr. Gao has published over 190 journal articles and filed over 100 patents. He is the recipient of the prestigious Changjiang Scholar and the National Science Fund for Distinguished Young Scholars awards.