Muutke küpsiste eelistusi

E-raamat: Vapor Generation Techniques for Trace Element Analysis: Fundamental Aspects

Edited by (Senior Researcher, National Research Council of Italy, Institute of Chemistry of Organometallic Compounds, Pisa, Italy), Edited by (Ralph Sturgeon, National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, Ontario, Canada)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Apr-2022
  • Kirjastus: Elsevier - Health Sciences Division
  • Keel: eng
  • ISBN-13: 9780323858427
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 238,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Apr-2022
  • Kirjastus: Elsevier - Health Sciences Division
  • Keel: eng
  • ISBN-13: 9780323858427
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Vapor Generation Techniques for Trace Element Analysis: Fundamental Aspects provides an overview and discussion of the fundamental aspects governing derivatization reactions of trace-level elements for analytical purposes. Vapor generation techniques coupled with atomic or mass spectrometry have been employed for over 50 years, but their popularity has dramatically increased in recent years, especially as alternative vapor generation approaches have been developed. This book bridges the knowledge gap of the derivatization mechanisms that yield volatile compounds and provides an update on recent developments in vapor generation techniques used for the determination and speciation of trace elements by atomic optical and mass spectrometry.

It will serve as a comprehensive, single-source overview of recent developments, providing readers with an understanding of the correct implementation—and limitations—of applying vapor generation techniques to everyday analytical problems facing the trace element analyst.

  • Covers reaction mechanisms and fundamental processes of vapor generation in detail
  • Includes classical and alternative vapor generation approaches: alkylation, chelation, plasma, photochemical and electrochemical
  • Guides the interpretation of experimental results and implementation of vapor generation techniques in the laboratory
List of contributors
ix
Preface xi
1 Introduction to vapor generation techniques
1(16)
Alessandro D'Ulivo
Ralph E. Sturgeon
1.1 Introduction
1(1)
1.2 Limitations of current sample introduction and atomization techniques
2(3)
1.3 Vapor generation techniques
5(3)
1.4 Favorable features and shortcomings of VGTs
8(2)
1.5 Overview of book structure and content
10(7)
References
12(5)
Part I Chemical Vapor Generation
17(194)
2 Chemical vapor generation by aqueous boranes
19(72)
Alessandro D'Ulivo
2.1 Introduction and historical background
19(2)
2.2 Borane reagents, reaction products, and apparatus
21(11)
2.3 Processes and mechanisms of chemical vapor generation
32(19)
2.4 Factors controlling reactivity in chemical vapor generation
51(12)
2.5 Interferences
63(10)
2.6 Final remarks, open questions, and future trends
73(18)
References
74(17)
3 Chemical vapor generation of transition and noble metals
91(38)
Stanislav Musil
Tomas Matousek
3.1 Introduction and background
91(1)
3.2 Experimental implementations of chemical vapor generation
92(12)
3.3 Efficiency of chemical vapor generation
104(4)
3.4 Detailed discussion of mechanisms and fundamental processes in chemical vapor generation
108(11)
3.5 Shortcomings with theory, remaining problems, and limitations
119(1)
3.6 Conclusions and future developments
120(9)
Acknowledgements
122(1)
References
122(7)
4 Chemical vapor generation by aqueous phase alkylation
129(24)
Zuzana Gajdosechova
Enea Pagliano
4.1 Introduction
129(1)
4.2 CVG with tetraalkylborates
130(6)
4.3 CVG with trialkyloxonium salts
136(7)
4.4 Metal speciation with Grignard reagents
143(1)
4.5 Future trends and perspectives
144(9)
References
145(8)
5 Other chemical vapor generation techniques
153(38)
Alessandro D'Ulivo
Yue Liu
Ralph E. Sturgeon
5.1 Introduction
153(1)
5.2 Chelate formation
154(9)
5.3 Thermal chemical vapor generation
163(2)
5.4 Generation of volatile oxides
165(4)
5.5 Chemical vapor generation of volatile chlorides
169(3)
5.6 Chemical vapor generation of volatile fluorides
172(1)
5.7 Chemical vapor generation of volatile bromides
173(1)
5.8 Chemical vapor generation of volatile carbonyls
173(3)
5.9 Chemical vapor generation of boron esters
176(3)
5.10 Chemical vapor generation using SnCl2
179(1)
5.11 Concluding remarks
179(12)
References
180(11)
6 Chemical vapor generation in nonaqueous media
191(20)
Xiaodong Wen
6.1 Introduction and background
191(2)
6.2 Early studies on chemical vapor generation in nonaqueous media
193(1)
6.3 Experimental implementation of the technique
194(6)
6.4 Fundamental processes; theory and mechanisms
200(5)
6.5 Remaining problems, limitations, and shortcomings
205(1)
6.6 Future developments
205(1)
6.7 Conclusions
206(5)
References
207(4)
Part II Non-Chemical Vapor Generation
211(136)
7 Photo-sono-thermo-chemical vapor generation techniques
213(52)
Ralph E. Sturgeon
7.1 General introduction
213(1)
7.2 Photochemical vapor generation
214(35)
7.3 Sonochemical vapor generation
249(3)
7.4 Thermochemical vapor generation
252(1)
7.5 Concluding remarks
252(13)
References
252(13)
8 Catalysts in photochemical vapor generation
265(18)
Zhirong Zou
Yafei Zhen
Chengbin Zheng
Xiandeng Hou
8.1 Introduction
265(2)
8.2 Heterogeneous catalysis
267(4)
8.3 Homogeneous catalysis
271(4)
8.4 Conclusions
275(8)
Acknowledgments
276(1)
References
276(7)
9 Plasma-mediated vapor generation techniques
283(34)
Xing Liu
Zhenli Zhu
9.1 General introduction
283(1)
9.2 Sources for plasma-mediated vapor generation
284(17)
9.3 Influence of coexisting ions on PMVG
301(4)
9.4 Analytical performance and applications of PMVG
305(2)
9.5 Possible mechanisms of PMVG
307(3)
9.6 Concluding remarks and future trends
310(7)
References
311(6)
10 Electrochemical vapor generation
317(30)
Eduardo Bolea
Francisco Laborda
10.1 Introduction and background to electrochemical vapor generation
317(1)
10.2 Fundamentals and experimental implementation of ECVG
318(10)
10.3 Mechanisms of ECVG
328(2)
10.4 Shortcomings and limitations: interferences in ECVG
330(8)
10.5 Final remarks and future developments
338(9)
References
339(8)
Part III Atomization Devices
347(96)
11 Nonplasma devices for atomization and detection of volatile metal species by atomic absorption and fluorescence
349(54)
Jin Dedina
11.1 Introduction
349(2)
11.2 Processes taking place in online atomizers
351(1)
11.3 Online atomization---preliminary considerations
352(2)
11.4 Online atomizers
354(26)
11.5 In-atomizer collection---preliminary considerations
380(2)
11.6 Experimental approaches to in-atomizer collection
382(9)
11.7 Conclusions and future perspectives
391(12)
Acknowledgments
392(1)
Dedication
392(1)
References
392(11)
12 Dielectric barrier discharge devices
403(40)
Jan Kratzer
Sebastian Burhenn
12.1 Introduction
403(1)
12.2 DBD concept and designs
404(2)
12.3 Plasma chemistry: processes and species
406(1)
12.4 Analytical applications
407(2)
12.5 DBD atomizers for AAS
409(8)
12.6 DBD atomizers for AFS
417(2)
12.7 DBD excitation for OES
419(8)
12.8 Analyte preconcentration
427(5)
12.9 Speciation analysis
432(3)
12.10 Future perspectives
435(8)
Acknowledgment
437(1)
References
437(6)
Abbreviations and symbols 443(4)
Index 447
Alessandro DUlivo is a Senior Researcher at National Research Council of Italy, developing his research activity at the Institute of Chemistry of Organometallic Compounds, Pisa-Italy, since 1981. Teaching Analytical Chemistry at Pisa University since 1991. In 2013 he received the qualification of full professor in Analytical Chemistry. His research interests are in the field of trace element determination and speciation by atomic and mass spectrometry, fundamental aspects and applications of vapour generation techniques, atomizers and element specific detectors for chromatography. He is a member of Editorial Advisory Board of Spectrochimica Acta Part B, Atomic Spectroscopy (Elsevier) and a IUPAC Fellow. He received the Ioannes Marcus Marci Medal in 2018 and the Török Tibor Medal in 2020. Ralph Sturgeons technical interests lie in inorganic analytical chemistry, comprising trace element analysis, vapor generation, organometallic speciation and production of Certified Reference Materials with a focus on atomic and mass spectrometric detection. He has published some 330 peer reviewed articles, is past Editor for Spectrochimica Acta Reviews and currently serves on the advisory boards of several international analytical chemistry journals. For more than 20 years Sturgeon has interacted extensively with the international metrology community, serving on working groups affiliated with both ISO and the BIPM while actively participating in audits of National Metrology Institute laboratories throughout the world. His contributions to analytical atomic spectroscopy have been recognized through a number of awards, including most recently the 2019 CSI Award. He was peer ranked amongst the top 10 most influential analytical spectroscopists for 2017 by the Analytical Scientist.