|
|
ix | |
Preface |
|
xi | |
|
1 Introduction to vapor generation techniques |
|
|
1 | (16) |
|
|
|
|
1 | (1) |
|
1.2 Limitations of current sample introduction and atomization techniques |
|
|
2 | (3) |
|
1.3 Vapor generation techniques |
|
|
5 | (3) |
|
1.4 Favorable features and shortcomings of VGTs |
|
|
8 | (2) |
|
1.5 Overview of book structure and content |
|
|
10 | (7) |
|
|
12 | (5) |
|
Part I Chemical Vapor Generation |
|
|
17 | (194) |
|
2 Chemical vapor generation by aqueous boranes |
|
|
19 | (72) |
|
|
2.1 Introduction and historical background |
|
|
19 | (2) |
|
2.2 Borane reagents, reaction products, and apparatus |
|
|
21 | (11) |
|
2.3 Processes and mechanisms of chemical vapor generation |
|
|
32 | (19) |
|
2.4 Factors controlling reactivity in chemical vapor generation |
|
|
51 | (12) |
|
|
63 | (10) |
|
2.6 Final remarks, open questions, and future trends |
|
|
73 | (18) |
|
|
74 | (17) |
|
3 Chemical vapor generation of transition and noble metals |
|
|
91 | (38) |
|
|
|
3.1 Introduction and background |
|
|
91 | (1) |
|
3.2 Experimental implementations of chemical vapor generation |
|
|
92 | (12) |
|
3.3 Efficiency of chemical vapor generation |
|
|
104 | (4) |
|
3.4 Detailed discussion of mechanisms and fundamental processes in chemical vapor generation |
|
|
108 | (11) |
|
3.5 Shortcomings with theory, remaining problems, and limitations |
|
|
119 | (1) |
|
3.6 Conclusions and future developments |
|
|
120 | (9) |
|
|
122 | (1) |
|
|
122 | (7) |
|
4 Chemical vapor generation by aqueous phase alkylation |
|
|
129 | (24) |
|
|
|
|
129 | (1) |
|
4.2 CVG with tetraalkylborates |
|
|
130 | (6) |
|
4.3 CVG with trialkyloxonium salts |
|
|
136 | (7) |
|
4.4 Metal speciation with Grignard reagents |
|
|
143 | (1) |
|
4.5 Future trends and perspectives |
|
|
144 | (9) |
|
|
145 | (8) |
|
5 Other chemical vapor generation techniques |
|
|
153 | (38) |
|
|
|
|
|
153 | (1) |
|
|
154 | (9) |
|
5.3 Thermal chemical vapor generation |
|
|
163 | (2) |
|
5.4 Generation of volatile oxides |
|
|
165 | (4) |
|
5.5 Chemical vapor generation of volatile chlorides |
|
|
169 | (3) |
|
5.6 Chemical vapor generation of volatile fluorides |
|
|
172 | (1) |
|
5.7 Chemical vapor generation of volatile bromides |
|
|
173 | (1) |
|
5.8 Chemical vapor generation of volatile carbonyls |
|
|
173 | (3) |
|
5.9 Chemical vapor generation of boron esters |
|
|
176 | (3) |
|
5.10 Chemical vapor generation using SnCl2 |
|
|
179 | (1) |
|
|
179 | (12) |
|
|
180 | (11) |
|
6 Chemical vapor generation in nonaqueous media |
|
|
191 | (20) |
|
|
6.1 Introduction and background |
|
|
191 | (2) |
|
6.2 Early studies on chemical vapor generation in nonaqueous media |
|
|
193 | (1) |
|
6.3 Experimental implementation of the technique |
|
|
194 | (6) |
|
6.4 Fundamental processes; theory and mechanisms |
|
|
200 | (5) |
|
6.5 Remaining problems, limitations, and shortcomings |
|
|
205 | (1) |
|
|
205 | (1) |
|
|
206 | (5) |
|
|
207 | (4) |
|
Part II Non-Chemical Vapor Generation |
|
|
211 | (136) |
|
7 Photo-sono-thermo-chemical vapor generation techniques |
|
|
213 | (52) |
|
|
|
213 | (1) |
|
7.2 Photochemical vapor generation |
|
|
214 | (35) |
|
7.3 Sonochemical vapor generation |
|
|
249 | (3) |
|
7.4 Thermochemical vapor generation |
|
|
252 | (1) |
|
|
252 | (13) |
|
|
252 | (13) |
|
8 Catalysts in photochemical vapor generation |
|
|
265 | (18) |
|
|
|
|
|
|
265 | (2) |
|
8.2 Heterogeneous catalysis |
|
|
267 | (4) |
|
8.3 Homogeneous catalysis |
|
|
271 | (4) |
|
|
275 | (8) |
|
|
276 | (1) |
|
|
276 | (7) |
|
9 Plasma-mediated vapor generation techniques |
|
|
283 | (34) |
|
|
|
|
283 | (1) |
|
9.2 Sources for plasma-mediated vapor generation |
|
|
284 | (17) |
|
9.3 Influence of coexisting ions on PMVG |
|
|
301 | (4) |
|
9.4 Analytical performance and applications of PMVG |
|
|
305 | (2) |
|
9.5 Possible mechanisms of PMVG |
|
|
307 | (3) |
|
9.6 Concluding remarks and future trends |
|
|
310 | (7) |
|
|
311 | (6) |
|
10 Electrochemical vapor generation |
|
|
317 | (30) |
|
|
|
10.1 Introduction and background to electrochemical vapor generation |
|
|
317 | (1) |
|
10.2 Fundamentals and experimental implementation of ECVG |
|
|
318 | (10) |
|
|
328 | (2) |
|
10.4 Shortcomings and limitations: interferences in ECVG |
|
|
330 | (8) |
|
10.5 Final remarks and future developments |
|
|
338 | (9) |
|
|
339 | (8) |
|
Part III Atomization Devices |
|
|
347 | (96) |
|
11 Nonplasma devices for atomization and detection of volatile metal species by atomic absorption and fluorescence |
|
|
349 | (54) |
|
|
|
349 | (2) |
|
11.2 Processes taking place in online atomizers |
|
|
351 | (1) |
|
11.3 Online atomization---preliminary considerations |
|
|
352 | (2) |
|
|
354 | (26) |
|
11.5 In-atomizer collection---preliminary considerations |
|
|
380 | (2) |
|
11.6 Experimental approaches to in-atomizer collection |
|
|
382 | (9) |
|
11.7 Conclusions and future perspectives |
|
|
391 | (12) |
|
|
392 | (1) |
|
|
392 | (1) |
|
|
392 | (11) |
|
12 Dielectric barrier discharge devices |
|
|
403 | (40) |
|
|
|
|
403 | (1) |
|
12.2 DBD concept and designs |
|
|
404 | (2) |
|
12.3 Plasma chemistry: processes and species |
|
|
406 | (1) |
|
12.4 Analytical applications |
|
|
407 | (2) |
|
12.5 DBD atomizers for AAS |
|
|
409 | (8) |
|
12.6 DBD atomizers for AFS |
|
|
417 | (2) |
|
12.7 DBD excitation for OES |
|
|
419 | (8) |
|
12.8 Analyte preconcentration |
|
|
427 | (5) |
|
|
432 | (3) |
|
12.10 Future perspectives |
|
|
435 | (8) |
|
|
437 | (1) |
|
|
437 | (6) |
Abbreviations and symbols |
|
443 | (4) |
Index |
|
447 | |