Muutke küpsiste eelistusi

E-raamat: Variability, Scalability and Stability of Microgrids

Edited by (Curtin University, Australia), Edited by (Aalborg University, Department of Energy Technology, Denmark), Edited by (Federation University Australia, School of Science Engineering and Information Technology, Australia)
  • Formaat: EPUB+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 22-Aug-2019
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785616945
  • Formaat - EPUB+DRM
  • Hind: 247,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 22-Aug-2019
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785616945

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book discusses variability, scalability, and stability of microgrids. It includes coverage of virtual plants and storage, providing numerous examples and case studies as well as simulation/experimental results in each chapter.



A microgrid is a small network of electricity users with a local source of supply that is usually attached to a larger grid but can function independently. The interconnection of small scale generating units, such as PV and wind turbines, and energy storage systems, such as batteries, to a low voltage distribution grid involves three major challenges: variability, scalability, and stability. It must keep delivering reliable and stable power also when changing, or repairing, any component, or under varying wind and solar conditions. It also must be able to accept additional units, i.e. be scalable. This reference discusses these three challenges facing engineers and researchers in the field of power systems, covering topics such as demand side energy management, transactive energy, optimizing and sizing of microgrid components. Case studies and results provide illustrative examples in each chapter.

Preface xix
Contributors xxi
1 Introduction 1(14)
S.M. Muyeen
Syed Islam
Frede Blaabjerg
1.1 Microgrid fundamentals and its anatomy
1(1)
1.2 Microgrid technical aspects
2(6)
1.2.1 Microgrid control issues
2(1)
1.2.2 Power electronics in microgrid
3(1)
1.2.3 Addressing power electronics reliability in microgrid
4(1)
1.2.4 Use of energy storage systems in microgrid
5(1)
1.2.5 Microgrid information and communication technology
6(1)
1.2.6 Stability and protection issues of microgrid
7(1)
1.3 Microgrid future form
8(3)
1.3.1 Addressing scalability and variability
8(1)
1.3.2 Transformation of microgrid to virtual power plant
8(1)
1.3.3 Future trends of power electronics and its adaptation in microgrid
9(1)
1.3.4 Future trends of energy storage technology
10(1)
1.3.5 Future form of microgrid communication
10(1)
1.4 What is in this book?
11(2)
1.5 Conclusions
13(1)
References
14(1)
2 Microgrid control overview 15(58)
S. Ali Pourmousavi Kani
Farhad Shahnia
M. Imran Azim
Md Asaduzzaman Shoeb
G.M. Shafiullah
2.1 Introduction
16(1)
2.2 Uncertainty of the generation and demand
17(3)
2.2.1 Application of grid-tied MGs
18(2)
2.3 MG control hierarchy
20(5)
2.3.1 Primary control
20(2)
2.3.2 Secondary control
22(3)
2.3.3 Tertiary control
25(1)
2.4 Case studies
25(38)
2.4.1 Droop-based power control
25(9)
2.4.2 Demand-side primary frequency control
34(8)
2.4.3 Centralised secondary control
42(21)
2.5 Conclusion
63(1)
References
64(9)
3 Requirements analysis in transactive energy management 73(26)
Sreenithya Sumesh
Aneesh Krishna
Chitra M. Subramanian
3.1 Introduction
73(2)
3.2 Transactive energy management
75(3)
3.3 Application of requirements engineering approaches in transactive energy management
78(6)
3.3.1 The i* goal modelling
81(3)
3.4 Requirements analysis and modelling of the TEM system
84(10)
3.4.1 Goal modelling of the TEM system
84(2)
3.4.2 Methodology
86(1)
3.4.3 Formalisation of multi-objective optimisation functions of the i* goal model
86(8)
3.5 Conclusion
94(1)
References
94(5)
4 Transformation of microgrid to virtual power plant 99(44)
Robert Lis
Robert Czechowski
4.1 Introduction
99(1)
4.2 Evolution of electricity - the case of Polish electricity sector
100(2)
4.3 Liberalization of the energy markets
102(4)
4.3.1 Future problem identification
102(4)
4.4 Microgrid turns to virtual power plant
106(1)
4.4.1 MGs structure and application
106(1)
4.5 Microgrid configuration
107(2)
4.6 Microsource controller
109(2)
4.6.1 Virtual power plant general concept
109(2)
4.7 Types of Virtual Power Plants
111(7)
4.7.1 An area-based approach to virtual power plants
111(2)
4.7.2 Grid support and ancillary services
113(4)
4.7.3 VPP model and algorithms
117(1)
4.8 Difference between microgrid and VPP
118(2)
4.9 Information communication technologies
120(12)
4.9.1 RSTP grid mechanism
121(1)
4.9.2 SHP grid mechanism
122(1)
4.9.3 HSR grid mechanism
122(1)
4.9.4 PRP grid mechanism
122(1)
4.9.5 Microgrid/VPP cybersecurity
123(2)
4.9.6 Energy management system
125(2)
4.9.7 Supervision control and data acquisition
127(1)
4.9.8 Control system operation and states
127(1)
4.9.9 Databases
128(1)
4.9.10 Database management process
129(1)
4.9.11 Distribution and dispatching centre
130(2)
4.10 Case study: regulation of VPP and MGs
132(6)
4.11 Conclusion
138(1)
References
138(5)
5 Operations of a clustered microgrid 143(32)
Munira Batool
Syed Islam
Farhad Shahnia
5.1 Overview of clustered microgrid
143(4)
5.2 Modeling of clustered microgrid
147(5)
5.3 Control and operation of clustered microgrid
152(5)
5.3.1 Droop-regulated strategy
152(3)
5.3.2 Optimization solver
155(1)
5.3.3 Modeling of non-dispatchable DERs
156(1)
5.4 Optimization problem formulation and technical constraints
157(3)
5.5 Case studies
160(8)
5.5.1 Study case I (an overloaded MG with primary and secondary actions only)
162(1)
5.5.2 Study case II (an overloaded MG with all actions)
162(3)
5.5.3 Study case III (an overloaded MG with primary and tertiary actions only)
165(1)
5.5.4 Study case IV (an overgenerating MG with primary and secondary actions only)
165(1)
5.5.5 Study case V (an overgenerating MG with all actions)
166(1)
5.5.6 Study case VI (an overgenerating MG with primary and tertiary actions only)
166(1)
5.5.7 Study case VII (multiple PMGs and HMGs with all actions)
167(1)
5.6 Concluding remarks
168(1)
Nomenclature
168(1)
References
169(6)
6 Distributed energy network using nanogrid 175(46)
Xiaofeng Sun
Wei Zhao
Lei Qi
6.1 Overview of nanogrid
175(6)
6.1.1 Concept of nanogrid
175(1)
6.1.2 Architecture of nanogrid
176(3)
6.1.3 Converters used in nanogrid
179(2)
6.2 Energy management in nanogrid
181(30)
6.2.1 Battery-mastered control of a simple photovoltaic/battery system
181(1)
6.2.2 Decentralized control for multiple battery-based nanogrid
182(1)
6.2.3 Decentralized control for multiple distributed generation units based nanogrid
183(12)
6.2.4 Decentralized control for multiple energy storage units based nanogrid
195(9)
6.2.5 Parameter design for a centralized hierarchical control for AC nanogrid
204(7)
6.3 Case study
211(6)
6.3.1 Large-scaled intelligent nanogrid
211(2)
6.3.2 Small-scaled intelligent nanogrid
213(1)
6.3.3 Nanogrid installed in remote villages
213(4)
6.3.4 Nanogrid based on cogeneration system
217(1)
6.4 Conclusion
217(1)
References
218(3)
7 Sizing of microgrid components 221(42)
Ghulam Mohy-ud-din
Kashem M. Muttaqi
Danny Sutanto
7.1 Microgrid components
221(1)
7.2 Microgrid sizing and profit maximization
222(4)
7.3 Models of distributed energy resources
226(8)
7.3.1 Probabilistic wind power output model
226(2)
7.3.2 Probabilistic photovoltaic power output model
228(4)
7.3.3 Dynamic battery energy storage power output model
232(1)
7.3.4 Micro-turbine power output model
233(1)
7.4 Optimal sizing of microgrid components
234(7)
7.4.1 Mathematical formulation
235(2)
7.4.2 Backtracking search optimization (BSO) algorithm
237(3)
7.4.3 Solution approach
240(1)
7.5 Case studies
241(18)
7.5.1 Case study 1
241(13)
7.5.2 Case study 2
254(5)
7.6 Summary
259(1)
References
260(3)
8 Optimal sizing of energy storage system 263(28)
Kamran Jalilpoor
Rahmat Khezri
Amin Mahmoudi
Arman Oshnoei
8.1 Introduction
263(1)
8.2 Energy storage technologies in microgrids: types and characteristics
264(9)
8.2.1 Battery energy storage systems
265(3)
8.2.2 Flywheel
268(1)
8.2.3 Fuel cell
268(1)
8.2.4 Superconducting magnetic energy storage
269(1)
8.2.5 Supercapacitor
269(1)
8.2.6 Technology comparison
270(3)
8.3 Necessity of energy storage in microgrids
273(3)
8.3.1 Frequency regulation
274(1)
8.3.2 Voltage support
274(1)
8.3.3 Reliability enhancement
274(1)
8.3.4 Demand shifting and peak shaving
274(1)
8.3.5 Power smoothing
274(1)
8.3.6 Black start
275(1)
8.3.7 Storage trades/arbitrage
275(1)
8.3.8 Non-spinning reserve
275(1)
8.4 Case study
276(10)
8.4.1 System description and input data
277(1)
8.4.2 Uncertainty modelling
278(1)
8.4.3 Problem formulation
279(3)
8.4.4 Numerical results
282(4)
8.5 Conclusions
286(1)
Nomenclature
286(2)
References
288(3)
9 Microgrid communications - protocols and standards 291(36)
Shantanu Kumar
Syed Islam
Alireza Jolfaei
9.1 Introduction
291(3)
9.2 Communication objectives and requirements
294(1)
9.3 Communication layer
295(6)
9.3.1 Home automation network
298(1)
9.3.2 Building automation network
298(1)
9.3.3 Neighbourhood area network
299(1)
9.3.4 Local area network
299(1)
9.3.5 Field area network
300(1)
9.3.6 Wide area network
300(1)
9.4 Communication infrastructure
301(4)
9.4.1 Wired communication
301(2)
9.4.2 Wireless communication
303(2)
9.5 Communication protocols
305(6)
9.5.1 Internet communications protocol suite
306(2)
9.5.2 Modbus
308(1)
9.5.3 Distributed Network Protocol version 3.3
309(1)
9.5.4 IEC 61850
310(1)
9.6 Importance of communication technology in microgrid control
311(4)
9.7 Case study
315(5)
9.8 Conclusion
320(1)
Nomenclature
320(2)
References
322(5)
10 Voltage stability of microgrids 327(50)
Nasser Hosseinzadeh
Saheb Khanabdal
Yousuf Al-Jabri
Rashid Al-Abri
Amer Al-Hinai
Mandi Banejad
10.1 Introduction
328(7)
10.1.1 Concept of voltage stability
328(1)
10.1.2 Voltage stability issues of microgrid
328(1)
10.1.3 Microgrid voltage stability assessment
329(6)
10.2 Small-signal model of a microgrid for voltage stability analysis
335(1)
10.3 Voltage stability enhancement
335(1)
10.4 Case studies
336(33)
10.4.1 Case study 1
336(7)
10.4.2 Case study 2
343(5)
10.4.3 Case study 3
348(2)
10.4.4 Case study 4
350(19)
10.5 Concluding remarks
369(1)
References
369(5)
Further reading
374(3)
11 Frequency stability and synthetic inertia 377(18)
Nasim Ullah
Anwar Ali
Haider Ali
Khalid Mahmood
11.1 Frequency stability issues of microgrid
377(2)
11.2 Effect of low inertia on the frequency stability of microgrid
379(1)
11.3 Frequency stability enhancement
380(6)
11.3.1 Synchronous generator (SG) model-based topologies
381(2)
11.3.2 Swing equation based
383(1)
11.3.3 Frequency-power-response-based topologies
384(1)
11.3.4 Droop-based approach
385(1)
11.4 Case study
386(5)
11.5 Concluding remarks
391(1)
References
391(4)
12 Microgrid protection 395(68)
Robert M. Cuzner
Siavash Beheshtaein
Farzad Banihashemi
12.1 Protective system design objectives
396(2)
12.2 Conventional protective system design practice
398(10)
12.2.1 Fault characterization
400(1)
12.2.2 Protective equipment and scheme components
401(1)
12.2.3 Fault coordination analysis and protective relaying
402(6)
12.3 Microgrid protection challenges
408(12)
12.3.1 Impact of distributed energy resources on power flow
411(1)
12.3.2 Impact of distributed energy resources on fault current magnitude
411(1)
12.3.3 Impact of microgrid connection modes and changing configurations
412(3)
12.3.4 Earthing considerations
415(5)
12.3.5 Cyberattacks
420(1)
12.4 Promising solutions for microgrid protection
420(13)
12.4.1 Limiting maximum DER capacity
421(1)
12.4.2 Evolving communication standards
421(2)
12.4.3 Fault current limiters
423(1)
12.4.4 Utilization of the ESS for fault discrimination
423(1)
12.4.5 Distributed generation control modifications
424(1)
12.4.6 Protective system design process for microgrids
424(6)
12.4.7 Addressing cybersecurity
430(3)
12.5 DC microgrid considerations
433(18)
12.5.1 DC fault characteristics
434(4)
12.5.2 DC protective system approaches
438(7)
12.5.3 DC protective devices
445(5)
12.5.4 DC system grounding
450(1)
12.6 Conclusion: future of microgrid protection
451(2)
References
453(10)
13 Black start and islanding operations of microgrid 463(34)
Clara Gouveia
Carlos Moreira
Andre G. Madureira
Jose Gouveia
Diego Issicaba
Jocio Abel Peps Lopes
13.1 Microgrid operational modes
463(8)
13.1.1 The microgrid
464(4)
13.1.2 Microgrid hierarchical control for emergency operation
468(1)
13.1.3 Extending the concept - the multi-microgrid
469(2)
13.2 Microgrid islanding and reconnection
471(10)
13.2.1 Microgrid primary frequency and voltage control
471(1)
13.2.2 Electric vehicles contribution to primary frequency support
472(1)
13.2.3 Secondary control and emergency dispatch strategies
473(3)
13.2.4 Black start strategies in multi microgrids
476(2)
13.2.5 Black start procedure
478(3)
13.3 Case study
481(10)
13.3.1 Microgrid islanding case study
481(4)
13.3.2 Multi Microgrid black start case study
485(6)
13.4 Concluding remarks
491(1)
References
492(5)
14 Microgrid feasibility study and economics 497(36)
Alessandra Parisio
Luigi Glielmo
Evangelos Rikos
14.1 Overview
497(3)
14.1.1 Outline of the chapter
500(1)
14.2 Theoretical background
500(2)
14.2.1 Model-predictive control
500(1)
14.2.2 Two-stage stochastic programming
501(1)
14.3 Microgrid component modelling and constraints
502(6)
14.3.1 Nomenclature
503(1)
14.3.2 Loads
503(2)
14.3.3 Distributed generators
505(1)
14.3.4 Energy storage systems
505(2)
14.3.5 Multi-energy components
507(1)
14.3.6 Electrical and thermal balance
507(1)
14.3.7 Interaction with the utility grid
508(1)
14.4 Microgrid operational strategies
508(6)
14.4.1 MPC-based energy-management system for operational optimization
508(5)
14.4.2 MPC-based multi-objective AC optimal power flow
513(1)
14.5 Feasibility study aspects
514(5)
14.5.1 Design and operation
515(1)
14.5.2 Components and topology
515(1)
14.5.3 Active and reactive control strategies
516(1)
14.5.4 Data collection and processing
517(1)
14.5.5 Costing of microgrid components
518(1)
14.6 Case studies
519(9)
14.6.1 Experimental evaluation in Athens, Greece
519(6)
14.6.2 Steinkjer microgrid
525(3)
14.7 Conclusions
528(1)
Appendix A
528(1)
A.1 Matrices
528(1)
References
529(4)
15 Power electronics-microgrid interfacing 533(40)
Saeed Peyghami
Mohammed Alhasheem
Frede Blaabjerg
15.1 Importance of power electronics in a microgrid
533(2)
15.2 Classifications of microgrids
535(5)
15.2.1 AC microgrids
535(1)
15.2.2 DC microgrids
535(5)
15.3 Power electronic converters
540(7)
15.3.1 General power conversation concept
540(1)
15.3.2 DC-DC converters
541(3)
15.3.3 DC-AC converters
544(3)
15.4 Power converter switching schemes
547(3)
15.4.1 Pulse width modulation
547(1)
15.4.2 Carrier-based pulse width modulation
547(1)
15.4.3 Zero-sequence injection
548(1)
15.4.4 Space vector modulation
549(1)
15.5 Power converter basic control schemes
550(8)
15.5.1 Electrical model of converters
550(3)
15.5.2 Control of converters in ac grids
553(3)
15.5.3 Control of converters in dc grids
556(2)
15.6 Filters for power converters-active and passive
558(6)
15.6.1 Passive filters
559(3)
15.6.2 Active filters
562(2)
15.7 Case studies
564(5)
15.7.1 Case I: MPC-controlled converters in ac microgrids
564(2)
15.7.2 Case II: Power-sharing control in a dc grid
566(3)
15.8 Conclusions
569(1)
References
570(3)
Index 573
S.M. Muyeen is an Associate Professor at Curtin University, Australia. His research interests include power system stability and control, electrical machine, FACTS, energy storage systems, renewable energy, HVDC systems, and smart grids. He has published over 200 articles in different journals and international conferences, and 6 books as an author or editor.



Syed M. Islam is currently the Dean of School of Science Engineering and Information Technology at Federation University Australia. He was previously the John Curtin Distinguished Professor in Electrical Power Engineering and the founding Director of Centre for Smart Grid and Sustainable Power Systems at Curtin University, Australia. His research interests are in Wind Energy Conversion Systems, Condition Monitoring of Transformers, Grid Connection of Renewables, and Smart Power Systems.



Frede Blaabjerg is a Professor in the Department of Energy Technology at Aalborg University, Denmark, head of the Center of Reliable Power Electronics (Corpe), and a highly renowned author. His research encompasses control, power electronics, energy savings, network quality, solar power and wind power. Prof. Blaabjerg is laureate of the Global Energy Prize, 2019.