Muutke küpsiste eelistusi

E-raamat: Vector Control of Three-Phase AC Machines: System Development in the Practice

  • Formaat: PDF+DRM
  • Sari: Power Systems
  • Ilmumisaeg: 14-May-2015
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662469156
  • Formaat - PDF+DRM
  • Hind: 122,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Power Systems
  • Ilmumisaeg: 14-May-2015
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662469156

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book addresses the vector control of three-phase AC machines, in particular induction motors with squirrel-cage rotors (IM), permanent magnet synchronous motors (PMSM) and doubly-fed induction machines (DFIM), from a practical design and development perspective. The main focus is on the application of IM and PMSM in electrical drive systems, where field-orientated control has been successfully established in practice. It also discusses the use of grid-voltage oriented control of DFIMs in wind power plants. This second, enlarged edition includes new insights into flatness-based nonlinear control of IM, PMSM and DFIM. The book is useful for practitioners as well as development engineers and designers in the area of electrical drives and wind-power technology. It is a valuable resource for researchers and students.

Part I Basic Problems
1 Principles of Vector Orientation and Vector Orientated Control Structures for Systems Using Three-Phase AC Machines
1.1 Formation of the Space Vectors and Its Vector Orientated Philosophy
3(5)
1.2 Basic Structures with Field-Orientated Control for Three-Phase AC Drives
8(4)
1.3 Basic Structures of Grid Voltage Orientated Control for DFIM Generators
12(5)
References
16(1)
2 Inverter Control with Space Vector Modulation
17(44)
2.1 Principle of Vector Modulation
17(6)
2.2 Calculation and Output of the Switching Times
23(2)
2.3 Restrictions of the Procedure
25(5)
2.3.1 Actually Utilizable Vector Space
25(2)
2.3.2 Synchronization Between Modulation and Signal Processing
27(1)
2.3.3 Consequences of the Protection Time and Its Compensation
28(2)
2.4 Realization Examples
30(15)
2.4.1 Modulation with Microcontroller SAB 80C166
31(4)
2.4.2 Modulation with Digital Signal Processor TMS 320C20/C25
35(6)
2.4.3 Modulation with Double Processor Configuration
41(4)
2.5 Special Modulation Procedures
45(8)
2.5.1 Modulation with Two Legs
45(1)
2.5.2 Synchronous Modulation
46(2)
2.5.3 Stochastic Modulation
48(5)
2.6 Degrees of Freedom in Modulation
53(8)
2.6.1 Modulation with Different Combinations of Component Vectors
54(1)
2.6.2 Modulation with Different Sequences of Component Vectors
55(2)
2.6.3 Execution Time of Zero Vectors
57(1)
References
58(3)
3 Machine Models as Prerequisite to Design the Controllers and Observers
61(52)
3.1 General Issues of State Space Representation
61(7)
3.1.1 Continuous State Space Representation
61(2)
3.1.2 Discontinuous State Space Representation
63(5)
3.2 Induction Machine with Squirrel-Cage Rotor (IM)
68(15)
3.2.1 Continuous State Space Models of the IM in Stator-Fixed and Field-Synchronous Coordinate Systems
69(8)
3.2.2 Discrete State Space Models of the IM
77(6)
3.3 Permanent Magnet Excited Synchronous Machine (PMSM)
83(5)
3.3.1 Continuous State Space Model of the PMSM in the Field Synchronous Coordinate System
83(3)
3.3.2 Discrete State Space Model of the PMSM
86(2)
3.4 Doubly-Fed Induction Machine (DFIM)
88(4)
3.4.1 Continuous State Space Model of the DFIM in the Grid Synchronous Coordinate System
88(3)
3.4.2 Discrete State Model of the DFIM
91(1)
3.5 Generalized Current Process Model for the Two Machine Types IM and PMSM
92(3)
3.6 Nonlinear Properties of the Machine Models and the Way to Nonlinear Controllers
95(18)
3.6.1 Idea of the Exact Linearization Using State Coordinate Transformation
95(7)
3.6.2 Flatness and the Idea of the Flatness-Based Control Design
102(10)
References
112(1)
4 Problems of Actual-Value Measurement and Vector Orientation
113(36)
4.1 Acquisition of the Current
113(3)
4.2 Acquisition of the Speed
116(6)
4.3 Possibilities for Sensor-Less Acquisition of the Speed
122(10)
4.3.1 Example for the Speed Sensor-Less Control of an IM Drive
123(8)
4.3.2 Example for the Speed Sensor-Less Control of a PMSM Drive
131(1)
4.4 Field Orientation and Its Problems
132(17)
4.4.1 Principle and Rotor Flux Estimation for IM Drives
133(5)
4.4.2 Calculation of Current Set Points
138(1)
4.4.3 Problems of the Sampling Operation of the Control System
139(5)
References
144(5)
Part II Three-Phase AC Drives with IM and PMSM
5 Dynamic Current Feedback Control for Fast Torque Impression in Drive Systems
149(40)
5.1 Survey About Existing Current Control Methods
150(10)
5.2 Environmental Conditions, Closed Loop Transfer Function and Control Approach
160(4)
5.3 Design of a Current Vector Controller with Dead-Beat Behaviour
164(8)
5.3.1 Design of a Current Vector Controller with Dead-Beat Behaviour with Instantaneous Value Measurement of the Current Actual-Values
164(5)
5.3.2 Design of a Current Vector Controller with Dead-Beat Behaviour for Integrating Measurement of the Current Actual-Values
169(2)
5.3.3 Design of a Current Vector Controller with Finite Adjustment Time
171(1)
5.4 Design of a Current State Space Controller with Dead-Beat Behaviour
172(5)
5.4.1 Feedback Matrix K
173(1)
5.4.2 Pre-filter Matrix V
174(3)
5.5 Treatment of the Limitation of Control Variables
177(12)
5.5.1 Splitting Strategy at Voltage Limitation
180(4)
5.5.2 Correction Strategy at Voltage Limitation
184(2)
References
186(3)
6 Equivalent Circuits and Methods to Determine the System Parameters
189(38)
6.1 Equivalent Circuits with Constant Parameters
189(5)
6.1.1 Equivalent Circuits of the IM
189(5)
6.1.2 Equivalent Circuits of the PMSM
194(1)
6.2 Modelling of the Nonlinearities of the IM
194(13)
6.2.1 Iron Losses
195(2)
6.2.2 Current and Field Displacement
197(4)
6.2.3 Magnetic Saturation
201(5)
6.2.4 Transient Parameters
206(1)
6.3 Parameter Estimation from Name Plate Data
207(6)
6.3.1 Calculation for IM with Power Factor cosφ
208(3)
6.3.2 Calculation for EVI Without Power Factor cosφ
211(1)
6.3.3 Parameter Estimation from Name Plate of PMSM
212(1)
6.4 Automatic Parameter Estimation for IM in Standstill
213(14)
6.4.1 Pre-considerations
213(2)
6.4.2 Current-Voltage Characteristics of the Inverter, Stator Resistance and Transient Leakage Inductance
215(2)
6.4.3 Identification of Inductances and Rotor Resistance with Frequency Response Methods
217(6)
6.4.4 Identification of the Stator Inductance with Direct Current Excitation
223(1)
References
224(3)
7 On-Line Adaptation of the Rotor Time Constant for IM Drives
227(30)
7.1 Motivation
227(5)
7.2 Classification of Adaptation Methods
232(4)
7.3 Adaptation of the Rotor Resistance with Model Methods
236(21)
7.3.1 Observer Approach and System Dynamics
236(4)
7.3.2 Fault Models
240(5)
7.3.3 Parameter Sensitivity
245(4)
7.3.4 Influence of the Iron Losses
249(1)
7.3.5 Adaptation in the Stationary and Dynamic Operation
250(4)
References
254(3)
8 Optimal Control of State Variables and Set Points for IM Drives
257(26)
8.1 Objective
257(1)
8.2 Efficiency Optimized Control
258(3)
8.3 Stationary Torque Optimal Set Point Generation
261(16)
8.3.1 Basic Speed Range
261(4)
8.3.2 Upper Field Weakening Area
265(3)
8.3.3 Lower Field Weakening Area
268(3)
8.3.4 Common Quasi-stationary Control Strategy
271(2)
8.3.5 Torque Dynamics at Voltage Limitation
273(4)
8.4 Comparison of the Optimization Strategies
277(3)
8.5 Rotor Flux Feedback Control
280(3)
References
282(1)
9 Nonlinear Control Structures for Three-Phase AC Drive Systems
283(30)
9.1 Existing Problems at Linear Controlled Drive Systems
283(1)
9.2 Nonlinear Control Structures for Drive Systems with IM
284(14)
9.2.1 Nonlinear Control Based on Exact Linearization of IM
284(5)
9.2.2 Nonlinear Control Based on Flatness of IM
289(9)
9.3 Nonlinear Control Structure for Drive Systems with PMSM
298(15)
9.3.1 Nonlinear Control Based on Exact Linearization of PMSM
298(5)
9.3.2 Nonlinear Control Based on Flatness of PMSM
303(6)
References
309(4)
Part III Wind Power Plants with DFIM
10 Linear Control Structure for Wind Power Plants with DFIM
313(14)
10.1 Construction of Wind Power Plants with DFIM
313(2)
10.2 Grid Voltage Orientated Controlled Systems
315(6)
10.2.1 Control Variables for Active and Reactive Power
316(1)
10.2.2 Dynamic Rotor Current Control for Decoupling of Active and Reactive Power
317(2)
10.2.3 Problems of the Implementation
319(2)
10.3 Front-End Converter Current Control
321(6)
10.3.1 Process Model
322(2)
10.3.2 Controller Design
324(2)
References
326(1)
11 Nonlinear Control Structure for Wind Power Plants with DFIM
327(18)
11.1 Existing Problems with Linear Controlled Wind Power Plants
327(1)
11.2 Nonlinear Control Based on Exact Linearization of DFIM
328(7)
11.2.1 Controller Design
328(3)
11.2.2 Control Structure with Direct Decoupling for DFIM
331(4)
11.3 Nonlinear Control Based on Flatness of DFIM
335(10)
11.3.1 Controller Design
335(3)
11.3.2 Flatness-Based Control Structure for DFIM
338(4)
References
342(3)
Appendix 345(16)
Index 361