Preface |
|
xix | |
|
|
1 | (224) |
|
|
3 | (112) |
|
1.1 Tire and Rim Fundamentals |
|
|
3 | (26) |
|
1.1.1 Tires and Sidewall Information |
|
|
3 | (11) |
|
|
14 | (3) |
|
1.1.3 Radial and Non-Radial Tires |
|
|
17 | (3) |
|
|
20 | (3) |
|
|
23 | (1) |
|
|
23 | (6) |
|
1.2 Vehicle Classifications |
|
|
29 | (6) |
|
1.2.1 ISO and FHWA Classification |
|
|
29 | (3) |
|
1.2.2 Passenger Car Classifications |
|
|
32 | (2) |
|
1.2.3 Passenger Car Body Styles |
|
|
34 | (1) |
|
1.3 Tire Coordinate Frame and Tire Force System |
|
|
35 | (3) |
|
|
38 | (5) |
|
|
43 | (14) |
|
1.6 * Tireprint Forces of a Static Tire |
|
|
57 | (6) |
|
1.6.1 * Static Tire. Normal Stress |
|
|
58 | (3) |
|
1.6.2 * Static Tire, Tangential Stresses |
|
|
61 | (2) |
|
|
63 | (11) |
|
1.7.1 Effect of Speed on the Rolling Friction Coefficient |
|
|
66 | (4) |
|
1.7.2 Effect of Inflation Pressure and Load on the Rolling Friction Coefficient |
|
|
70 | (3) |
|
1.7.3 * Effect of Sideslip Angle on Rolling Resistance |
|
|
73 | (1) |
|
1.7.4 * Effect of Camber Angle on Rolling Resistance |
|
|
73 | (1) |
|
|
74 | (9) |
|
|
83 | (10) |
|
|
93 | (6) |
|
|
99 | (5) |
|
|
104 | (2) |
|
|
106 | (9) |
|
|
109 | (6) |
|
2 Forward Vehicle Dynamics |
|
|
115 | (58) |
|
2.1 Parked Car on a Level Road |
|
|
115 | (6) |
|
2.2 Parked Car on an Inclined Road |
|
|
121 | (5) |
|
2.3 Accelerating Car on a Level Road |
|
|
126 | (5) |
|
2.4 Accelerating Car on an Inclined Road |
|
|
131 | (10) |
|
2.5 Parked Car on a Banked Road |
|
|
141 | (5) |
|
2.6 * Optimal Drive and Brake Force Distribution |
|
|
146 | (6) |
|
2.7 * Vehicles With More Than Two Axles |
|
|
152 | (4) |
|
2.8 * Vehicles on a Crest and Dip |
|
|
156 | (7) |
|
2.8.1 * Vehicles on a Crest |
|
|
156 | (5) |
|
2.8.2 * Vehicles on a Dip |
|
|
161 | (2) |
|
|
163 | (2) |
|
|
165 | (8) |
|
|
167 | (6) |
|
|
173 | (52) |
|
|
173 | (7) |
|
3.2 Driveline and Efficiency |
|
|
180 | (6) |
|
3.3 Gearbox and Clutch Dynamics |
|
|
186 | (8) |
|
|
194 | (18) |
|
3.4.1 Geometric Ratio Gearbox Design |
|
|
195 | (14) |
|
3.4.2 * Progressive Ratio Gearbox Design |
|
|
209 | (3) |
|
|
212 | (2) |
|
|
214 | (11) |
|
|
216 | (9) |
|
|
225 | (280) |
|
|
227 | (84) |
|
4.1 Rotation About Global Cartesian Axes |
|
|
227 | (5) |
|
4.2 Successive Rotation About Global Cartesian Axes |
|
|
232 | (1) |
|
4.3 Rotation About Local Cartesian Axes |
|
|
233 | (4) |
|
4.4 Successive Rotation About Local Cartesian Axes |
|
|
237 | (8) |
|
4.5 General Transformation |
|
|
245 | (7) |
|
4.6 Local and Global Rotations |
|
|
252 | (1) |
|
|
253 | (5) |
|
|
258 | (3) |
|
|
261 | (8) |
|
4.10 * Time Derivative and Coordinate Frames |
|
|
269 | (9) |
|
|
278 | (4) |
|
4.12 Angular Acceleration |
|
|
282 | (5) |
|
4.13 Rigid Body Acceleration |
|
|
287 | (3) |
|
|
290 | (11) |
|
|
301 | (3) |
|
|
304 | (7) |
|
|
305 | (6) |
|
|
311 | (68) |
|
|
311 | (20) |
|
5.2 Slider-Crank Mechanism |
|
|
331 | (7) |
|
5.3 Inverted Slider-Crank Mechanism |
|
|
338 | (6) |
|
5.4 Instant Center of Rotation |
|
|
344 | (12) |
|
|
356 | (7) |
|
5.5.1 Coupler Point Curve for Four-Bar Linkages |
|
|
356 | (2) |
|
5.5.2 Coupler Point Curve for a Slider-Crank Mechanism |
|
|
358 | (4) |
|
5.5.3 Coupler Point Curve for Inverted Slider-Crank Mechanism |
|
|
362 | (1) |
|
|
363 | (8) |
|
|
371 | (2) |
|
|
373 | (6) |
|
|
374 | (5) |
|
|
379 | (68) |
|
|
379 | (17) |
|
6.2 Vehicles with More Than Two Axles |
|
|
396 | (3) |
|
6.3 * Vehicle with Trailer |
|
|
399 | (4) |
|
|
403 | (6) |
|
6.5 * Four wheel steering |
|
|
409 | (17) |
|
6.6 * Steering Mechanism Optimization |
|
|
426 | (11) |
|
|
437 | (1) |
|
|
438 | (9) |
|
|
440 | (7) |
|
|
447 | (58) |
|
7.1 Solid Axle Suspension |
|
|
447 | (10) |
|
7.2 Independent Suspension |
|
|
457 | (5) |
|
7.3 Roll Center and Roll Axis |
|
|
462 | (13) |
|
7.4 * Car Tire Relative Angles |
|
|
475 | (6) |
|
|
475 | (3) |
|
|
478 | (1) |
|
|
479 | (1) |
|
|
480 | (1) |
|
7.5 * Suspension Requirements and Coordinate Frames |
|
|
481 | (12) |
|
7.5.1 * Kinematic Requirements |
|
|
481 | (1) |
|
7.5.2 * Dynamic Requirements |
|
|
482 | (2) |
|
7.5.3 * Wheel, wheel-body, and tire Coordinate Frames |
|
|
484 | (9) |
|
|
493 | (2) |
|
|
495 | (10) |
|
|
497 | (8) |
|
|
505 | (218) |
|
|
507 | (58) |
|
|
507 | (10) |
|
|
507 | (1) |
|
|
508 | (1) |
|
|
509 | (2) |
|
|
511 | (1) |
|
|
511 | (6) |
|
8.2 Rigid Body Translational Dynamics |
|
|
517 | (3) |
|
8.3 Rigid Body Rotational Dynamics |
|
|
520 | (8) |
|
|
528 | (10) |
|
8.5 Lagrange's Form of Newton's Equations of Motion |
|
|
538 | (6) |
|
|
544 | (11) |
|
|
555 | (2) |
|
|
557 | (8) |
|
|
558 | (7) |
|
9 Vehicle Planar Dynamics |
|
|
565 | (106) |
|
9.1 Vehicle Coordinate Frame |
|
|
565 | (5) |
|
9.2 Rigid Vehicle Newton-Euler Dynamics |
|
|
570 | (7) |
|
9.3 Force System Acting on a Rigid Vehicle |
|
|
577 | (16) |
|
9.3.1 Tire Force and Body Force Systems |
|
|
578 | (4) |
|
|
582 | (1) |
|
9.3.3 Two-wheel Model and Body Force Components |
|
|
583 | (10) |
|
9.4 Two-wheel Rigid Vehicle Dynamics |
|
|
593 | (11) |
|
|
604 | (24) |
|
9.6 * Linearized Model for a Two-Wheel Vehicle |
|
|
628 | (4) |
|
|
632 | (27) |
|
|
659 | (1) |
|
|
660 | (11) |
|
|
662 | (9) |
|
10 * Vehicle Roll Dynamics |
|
|
671 | (52) |
|
10.1 * Vehicle Coordinate and DOF |
|
|
671 | (1) |
|
10.2 * Equations of Motion |
|
|
672 | (4) |
|
10.3 * Vehicle Force System |
|
|
676 | (13) |
|
10.3.1 * Tire and Body Force Systems |
|
|
676 | (3) |
|
10.3.2 * Tire Lateral Force |
|
|
679 | (3) |
|
10.3.3 * Body Force Components on a Two-wheel Model |
|
|
682 | (7) |
|
10.4 * Two-wheel Rigid Vehicle Dynamics |
|
|
689 | (3) |
|
10.5 * Steady-State Motion |
|
|
692 | (4) |
|
10.6 * Transient Response |
|
|
696 | (15) |
|
|
711 | (1) |
|
|
712 | (11) |
|
|
715 | (8) |
|
|
723 | (222) |
|
|
725 | (94) |
|
11.1 Mechanical Vibration Elements |
|
|
725 | (8) |
|
11.2 Newton's Method and Vibrations |
|
|
733 | (7) |
|
11.3 Frequency Response of Vibrating Systems |
|
|
740 | (40) |
|
|
741 | (10) |
|
|
751 | (12) |
|
11.3.3 Eccentric Excitation |
|
|
763 | (6) |
|
11.3.4 * Eccentric Base Excitation |
|
|
769 | (6) |
|
11.3.5 * Classification for the Frequency Responses of One-DOF Forced Vibration Systems |
|
|
775 | (5) |
|
11.4 Time Response of Vibrating Systems |
|
|
780 | (12) |
|
11.5 Vibration Application and Measurement |
|
|
792 | (5) |
|
11.6 * Vibration Optimization Theory |
|
|
797 | (11) |
|
|
808 | (2) |
|
|
810 | (9) |
|
|
813 | (6) |
|
|
819 | (64) |
|
12.1 Lagrange Method and Dissipation Function |
|
|
819 | (10) |
|
|
829 | (7) |
|
12.3 Natural Frequencies and Mode Shapes |
|
|
836 | (7) |
|
12.4 Bicycle Car and Body Pitch Mode |
|
|
843 | (5) |
|
12.5 Half Car and Body Roll Mode |
|
|
848 | (5) |
|
12.6 Full Car Vibrating Model |
|
|
853 | (8) |
|
|
861 | (13) |
|
12.7.1 * Mathematical Model |
|
|
861 | (2) |
|
12.7.2 * Frequency Response |
|
|
863 | (5) |
|
12.7.3 * Natural and Invariant Frequencies |
|
|
868 | (6) |
|
|
874 | (1) |
|
|
875 | (8) |
|
|
878 | (5) |
|
13 Suspension Optimization |
|
|
883 | (62) |
|
|
883 | (6) |
|
|
889 | (4) |
|
13.3 RMS Suspension Optimization |
|
|
893 | (21) |
|
13.4 * Time Response Optimization |
|
|
914 | (6) |
|
13.5 * RMS Quarter Car Optimization |
|
|
920 | (12) |
|
13.6 * Optimization Based on Natural Frequency and Wheel Travel |
|
|
932 | (4) |
|
|
936 | (2) |
|
|
938 | (7) |
|
|
940 | (5) |
A Frequency Response Curves |
|
945 | (6) |
B Trigonometric Formulas |
|
951 | (4) |
C Unit Conversions |
|
955 | (4) |
References |
|
959 | (6) |
Index |
|
965 | |