Muutke küpsiste eelistusi

E-raamat: Veracity of Big Data: Machine Learning and Other Approaches to Verifying Truthfulness

  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Jun-2018
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9781484236338
  • Formaat - PDF+DRM
  • Hind: 34,57 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Jun-2018
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9781484236338

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Examine the problem of maintaining the quality of big data and discover novel solutions. You will learn the four V’s of big data, including veracity, and study the problem from various angles. The solutions discussed are drawn from diverse areas of engineering and math, including machine learning, statistics, formal methods, and the Blockchain technology. 

Veracity of Big Data serves as an introduction to machine learning algorithms and diverse techniques such as the Kalman filter, SPRT, CUSUM, fuzzy logic, and Blockchain, showing how they can be used to solve problems in the veracity domain. Using examples, the math behind the techniques is explained in easy-to-understand language.

Determining the truth of big data in real-world applications involves using various tools to analyze the available information. This book delves into some of the techniques that can be used. Microblogging websites such as Twitter have played a major role in public life, including during presidential elections. The book uses examples of microblogs posted on a particular topic to demonstrate how veracity can be examined and established. Some of the techniques are described in the context of detecting veiled attacks on microblogging websites to influence public opinion.

What You'll Learn
  • Understand the problem concerning data veracity and its ramifications
  • Develop the mathematical foundation needed to help minimize the impact of the problem using easy-to-understand language and examples
  • Use diverse tools and techniques such as machine learning algorithms, Blockchain, and the Kalman filter to address veracity issues
Who This Book Is For

Software developers and practitioners, practicing engineers, curious managers, graduate students, and research scholars
About the Author ix
Acknowledgments xi
Introduction xiii
Chapter 1 The Big Data Phenomenon 1(16)
Why "Big" Data
4(1)
The V's of Big Data
5(4)
Veracity-The Fourth 'V'
9(6)
Summary
15(2)
Chapter 2 Veracity of Web Information 17(18)
The Problem
18(3)
The Causes
21(3)
The Effects
24(3)
The Remedies
27(4)
Characteristics of a Trusted Website
31(2)
Summary
33(2)
Chapter 3 Approaches to Establishing Veracity of Big Data 35(30)
Machine Learning
36(6)
Change Detection
42(5)
Optimization Techniques
47(5)
Natural Language Processing
52(3)
Formal Methods
55(2)
Fuzzy Logic
57(2)
Information Retrieval Techniques
59(2)
Blockchain
61(1)
Summary
62(3)
Chapter 4 Change Detection Techniques 65(22)
Sequential Probability Ratio Test (SPRT)
70(4)
The CUSUM Technique
74(6)
Kalman Filter
80(5)
Summary
85(2)
Chapter 5 Machine Learning Algorithms 87(32)
The Microblogging Example
90(5)
Collecting the Ground Truth
95(3)
Logistic Regression
98(5)
NaIve Bayes Classifier
103(4)
Support Vector Machine
107(4)
Artificial Neural Networks
111(3)
K-Means Clustering
114(3)
Summary
117(2)
Chapter 6 Formal Methods 119(26)
Terminology
122(1)
Propositional Logic
123(10)
Predicate Calculus
133(5)
Fuzzy Logic
138(5)
Summary
143(2)
Chapter 7 Medley of More Methods 145(10)
Collaborative Filtering
145(6)
Vector Space Model
151(3)
Summary
154(1)
Chapter 8 The Future: Blockchain and Beyond 155(14)
Blockchain Explained
158(9)
Blockchain for Big Data Veracity
167(1)
Future Directions
168(1)
Summary 169(2)
Index 171
Vishnu Pendyala is a Senior Member of IEEE and of the Computer Society of India (CSI), with over two decades of software experience with industry leaders such as Cisco, Synopsys, Informix (now IBM), and Electronics Corporation of India Limited. He is on the executive council of CSI, a member of the Special Interest Group on Big Data Analytics, and is the founding editor of its flagship publication, Visleshana. He recently taught a short-term course on Big Data Analytics for Humanitarian Causes, which was sponsored by the Ministry of Human Resources, Government of India under the GIAN scheme, and he delivered multiple keynote presentations at IEEE-sponsored international conferences. Vishnu has been living and working in the Silicon Valley for over two decades.