Muutke küpsiste eelistusi

E-raamat: Vertical-Cavity Surface-Emitting Laser Devices

Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Springer Series in Photonics 6
  • Ilmumisaeg: 17-Apr-2013
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662052631
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer Series in Photonics 6
  • Ilmumisaeg: 17-Apr-2013
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662052631
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The vertical cavity surface emitting laser (VCSEL) is a relatively new se- conductor laser device, especially applicable to ?ber-optic networks in the 21st century. About 25 years have passed since its invention, and devices for Gigabit Ethernet are now being mass-produced. It is expected that VCSELs will open up a new era of very-high-speed ?ber-optic networks and a wide range of application areas. VCSEL have many advantages, such as: (i) monolithic and high-yield f- rication;(ii)extremelylowthresholdandsmallpowerconsumption;(iii)hi- speedmodulationcapabilityatlowdrivingcurrentlevels;(iv)easypackaging, and so on. The emission spectra have been extended from 850nm toward the visible and infrared regions. We can expect reasonably high-power output, enough for most applications, and extremely high powers in some engineered arrayed devices. This book project was initiated to provide important information on VCSELs, edited by Prof. Herbert Li. Very regrettably, while editing this book he passed away. After some time, the present editor succeeded him. Due to this reason the publication of this book was delayed, and the editor would like to thank the contributors for their patience. This book includes the basic concepts, device technology, and application areas of VCSELs, and can be read not only by scientists and engineers in the ?eld, but also by graduate course students who wish to start their research or to get an introduction to the vast knowledge on semiconductor lasers.

Arvustused

From the reviews:









"Vertical-Cavity Surface-Emitting Lasers (or VCSELs) are relatively new semiconductor laser devices. This book has been edited to cover basic concepts, aspects of the devices technology and application areas of VCSELs. The different chapters are written by leading experts in the field . The book is not only intended for scientists and engineers who are specialists in the field, but also for graduate students . I can recommend this book to scientists and engineers working on or with VCSELs." (Jan Danckaert and Erik Stijns, Physicalia, Vol. 25 (4), 2003)



"This book includes the basic concepts, device technology, and application areas of VCSELs . this book is the first kind in that it provides readers with a comprehensive account of the latest technological developments in VCSEL devices. In fact all the chapters are written by pioneers and key experts . Readers will come to appreciate all the crucial aspects of VCSEL devices. It is an excellent reference and an exclusive course book and I can recommend it without any reservations." (K.Seiffert, Optik, Vol. 114 (10), 2003)

Vertical-Cavity Surface-Emitting Laser: Introduction and Review
1(30)
K. Iga
Why the Surface Emitting Laser?
1(2)
Fundamental Laser Characteristics
3(4)
Threshold Current
3(3)
Power Output and Efficiency
6(1)
Criteria for Confirmation of Lasing
7(1)
Material and Device Structure
7(4)
Device Structure
7(1)
Material
7(1)
Current Confinement
8(1)
Optical Confinement
9(1)
Resonant Mode of Surface-Emitting Laser
10(1)
Polarization of VCSEL
11(1)
Surface Emitting Laser in Long Wavelength Region
11(3)
GaInAsP / InP SE Laser
11(2)
AlGaInAs / AlGaInAs SE Laser
13(1)
GaInNAs / GaAs SE Laser
14(1)
Surface-Emitting Laser in Mid-Wavelength Region
14(5)
0.98 μm GaInAs / GaAs SE Laser
14(3)
0.98 μm GaInAs / GaAs SE Laser on GaAs (311) Substrate
17(2)
Surface-Emitting Lasers in Near-Infrared and Red Spectral Regions
19(1)
0.85 μm GaAlAs / GaAs SE Laser
19(1)
0.78 μm GaAlAs / GaAs SE Laser
20(1)
GaInAlP Red SE Lasers
20(1)
Surface-Emitting Lasers in Green--Blue--UV Spectral Regions
20(1)
Ultimate Characteristics and Technologies for Innovation
21(3)
Ultimate Characteristics
21(2)
Polarization Control
23(1)
Photonic Integration Based on VCSELs
24(1)
Possible Applications
25(1)
Conclusion
26(5)
References
27(4)
Physics of the Gain Medium in Vertical-Cavity Surface-Emitting Semiconductor Lasers
31(22)
W.W. Chow
K.D. Choquette
S.W. Koch
VCSEL Structure
32(3)
Semiclassical Laser Theory
35(1)
Semiconductor Bloch Equations
36(4)
Bandstructure Calculations
40(4)
Threshold Properties
44(6)
Conclusion
50(3)
References
51(2)
Operating Principles of VCSELs
53(46)
R. Michalzik
K.J. Ebeling
Basic Properties of VCSELs
54(12)
Relative Confinement Factor
55(1)
Bragg Reflectors
56(3)
Threshold Gain and Photon Lifetime
59(1)
Matrix Method and Standing-Wave Pattern
60(2)
Energy Flux and Differential Quantum Efficiency
62(3)
Conversion Efficiency
65(1)
Emission Characteristics of Oxide-Confined VCSELs
66(11)
Device Structure
67(1)
Experimental Operating Characteristics
67(2)
Temperature Behavior
69(4)
Transverse Modes
73(4)
Dynamic and Noise Behavior
77(9)
Rate Equations
78(1)
Small-Signal Modulation Response
79(4)
Relative Intensity Noise
83(2)
Emission Linewidth
85(1)
VCSEL Based Optical Interconnects
86(6)
Fiber Coupling
87(1)
Large-Signal Modulation Effects
88(1)
High-Speed Optical Data Transmission
88(4)
Conclusion
92(7)
References
93(6)
Band Engineering of the Polarization and Gain Properties in VCSELs
99(36)
T. Ohtoshi
M. Takahashi
Theory
100(17)
Anisotropy of Valence Band Structures in Non-(001)-Oriented QW Layers
100(3)
Polarization Control Through the Anisotropic Gain
103(4)
Anisotropic Gains in Wurtzite-GaN Crystals
107(5)
Anisotropic Gains in Zinc Blende--GaN Crystals
112(5)
Experiment
117(13)
Review of Experimental Work
117(3)
Optical Anisotropy of (n11)-Oriented QWs
120(2)
Polarization Characteristics of (n11)-Oriented VCSELs
122(8)
Summary
130(5)
References
131(4)
Three-Dimensional Simulation of Vertical-Cavity Surface-Emitting Semiconductor Lasers
135(58)
M. Osinski
W. Nakwaski
VCSEL Structures
136(2)
Optical Phenomena
138(8)
Electrical Phenomena
146(4)
Thermal Phenomena
150(1)
Interactions Between Physical Phenomena
151(1)
3D Modeling of Decoupled Optical, Electrical or Thermal Problems
152(11)
Optical Modeling
152(9)
Electrical Modeling
161(1)
Thermal Modeling
162(1)
3D Electro-Optical, Electro-Thermal or Opto-Thermal Simulations
163(10)
Electro-Optical Simulation
163(5)
Electro-Thermal Simulation
168(5)
Opto-Thermal Simulation
173(1)
Complete Electro-Opto-Thermal Simulation
173(7)
Conclusions
180(13)
References
180(13)
Modeling the Dynamics of VCSELs
193(34)
S.F. Yu
Basic Equations of VCSELs
194(4)
Wave Equations
194(1)
Rate Equation of Carrier Concentration inside the Active and Spacer Layers
195(1)
Gain Spectrum, Induced Refractive Index Change and Spontaneous Emission Rate
196(2)
One Dimensional Approximation of VCSELs
198(11)
One Dimensional Approximation of Wave Equations
198(1)
Description of Waves in Bragg Reflectors Using the Scattering Matrix
199(1)
Numerical Techniques
200(4)
Self-Consistent Calculation
204(1)
Numerical Results
205(4)
Quasi-Three-Dimensional Approximation of VCSELs
209(3)
Quasi-Three-Dimensional Approximation of Wave Equations
209(1)
Numerical Technique
210(1)
Numerical Results
211(1)
Improved Dynamic Models of VCSELs
212(11)
Increase of Propagation Distance by Using the Time-Dependent Transfer Matrix
213(2)
Light Diffraction at the Interface of Dielectric Layers--Bessel Transform
215(2)
Light Diffraction inside the Dielectric Layers -- Wide-Angle Beam Propagation Method
217(2)
Numerical Results
219(4)
Discussion and Conclusion
223(4)
References
224(3)
Low-Power Vertical-Cavity Surface-Emitting Lasers and Microcavity Light-Emitting Diodes Based on Apertured-Microcavities
227(32)
D.G. Deppe
Optical Modes in Planar and Dielectrically-Apertured Fabry-Perot Microcavities and the Oxide-Confined VCSEL
228(12)
Oxide-Confined VCSELs with Quantum-Dot Active Regions
240(3)
Microcavity Light Emitters Based on Quantum Dots and Oxide-Apertures
243(10)
Summary
253(6)
References
254(5)
Cavity and Mirror Design for Vertical-Cavity Surface-Emitting Lasers
259(44)
A.D. Rakic
M.L. Majewski
DBR Mirrors for VCSELs
260(23)
All-Semiconductor Mirrors
262(1)
Native Oxide Mirrors
263(1)
Mirrors for Long-Wavelength VCSELs
264(1)
DBRs Augmented by Metallic Multilayers
265(1)
Matrix-Theory for Abrupt Interface and Graded-Interface DBRs
266(3)
Periodic Structure of DBR Mirrors
269(2)
Two-Material Periodic DBR Mirror with Abrupt Interfaces
271(9)
Two-Material Periodic Mirror with Graded Interfaces
280(3)
VCSEL Structures
283(3)
Lasing Threshold and Modal Guiding in VCSELs
286(7)
Relationship Between the Relative Intensity Noise (RIN) and the Cavity Geometry
289(4)
Conclusions
293(10)
References
293(10)
1.3 and 1.55 μm Vertical-Cavity Surface-Emitting Lasers
303(20)
O. Blum Sphan
T.-M. Chou
G.A. Evans
Special Issues for 1.3 and 1.55 μm VCSELs
303(20)
References
320(3)
Application of VCSELs to Radiation-Tolerant Optical Data Links
323(20)
M. Pearce
J. Ye
G. Evans
R. Stroynowski
M.-L. Andrieux
B. Dinkespiler
Optical Links in ATLAS
325(1)
Optical Link Specifications for ATLAS
326(1)
Link Considerations
327(6)
The Fiber Channel
328(4)
Optical Sources
332(1)
Detectors
333(1)
Design and Performance of the Inner-Detector Links
333(3)
Design and Performance of the Electromagnetic Calorimeter Links
336(3)
Conclusions
339(4)
References
340(3)
Progress in Blue and Near-Ultraviolet Vertical-Cavity Emitters: A Status Report
343(24)
A.V. Nurmikko
J. Han
Optical Gain in Blue / NUV InGaN Quantum Wells
344(6)
Strategies and Approaches to Vertical-Cavity Blue and Near-Ultraviolet Emitters
350(14)
Optical Resonator Design and Fabrication: Demonstration of Optically-Pumped VCSEL Operation in 380--410 nm Range
351(8)
Electrical Injection: Demonstration Resonant-Cavity Light-Emitting Diodes
359(5)
Conclusion
364(3)
References
364(3)
Long-Wavelength InP-Based VCSELs
367(16)
M. Ortsiefer
R. Shau
J. Rosskopf
M.-C. Amann
Device Structure
369(5)
Device Characteristics
374(4)
Conclusion
378(5)
References
380(3)
Index 383