Muutke küpsiste eelistusi

E-raamat: Vibration Acoustics Applied To Vver-1200 Reactor Plant

(Scientific Technical Center Diaprom, Russia), (Novovoronezh Nuclear Plant, Russia), Translated by (-), (Russian Society Of System Engineering, Russia)
  • Formaat: 628 pages
  • Ilmumisaeg: 05-May-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811234682
  • Formaat - PDF+DRM
  • Hind: 152,10 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 628 pages
  • Ilmumisaeg: 05-May-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811234682

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"The safe operation of a nuclear power plant depends on the reliability and safety of the reactor plant, which in turn requires careful monitoring of the equipment at the manufacturing and operation stages. This monograph critically examines the fundamental effects of hydrodynamic and vibration load formation on the modern power unit of the VVER-1200 nuclear power plant, which is originally designed in Russia, as well as the causes and main sources of vibration in the main circulation loop and their energy contribution. Practical examples are used to explain how vibration stress can be reduced and the hydrodynamic status of the circuit improved. Current research on the vibroacoustics of some non-Russion nuclear reactors is also included"--
About the Authors v
Foreword vii
Scientific Translation Editor
Preface ix
Thoughts on Diagnostics Inspired by Reading the Monograph "Vibration Acoustics Applied to VVER-1200 Reactor Plant" xi
G.V. Arkadov
V.I. Pavelko
M.T. Slepov
In Lieu of a Preface --- Historical Journey and a Bibliographic Guide xvii
Abbreviations xxxi
Chapter 1 Equations of Motion of Dynamic System
1(26)
1.1 Single Degree of Freedom Dynamic Systems
1(1)
1.2 Simplest Analytical Model of Oscillations of Main Equipment of VVER Heat-Exchanging Loop
2(12)
1.3 Points of Application of External Driving Vibration Forces
14(2)
1.4 Numerical Estimates of the Ratio of MCP and SG Natural Oscillation Frequencies
16(6)
1.5 On Modal Analysis in the Simplest Case of Oscillations of Connected Masses
22(5)
Chapter 2 Parameters of Basic Dynamic System
27(64)
2.1 DS Dynamic Stiffness and Transfer Function
27(3)
2.2 Global Properties of the Dynamic System
30(20)
2.2.1 Modulus and phase of the transfer function
30(12)
2.2.2 Deterministic and random applied force
42(2)
2.2.3 DS secular equation
44(6)
2.3 Solutions of DS Homogeneous Equation
50(14)
2.3.1 Free oscillations
50(14)
2.4 Evaluating Parameters of Motion Equation Based on Spectral Measurements
64(5)
2.5 Practical Aspects of Measuring Parameters of DS Transfer Function
69(11)
2.5.1 Assessment of small damping factor
69(5)
2.5.2 Assessment of arbitrary damping ratios
74(6)
2.6 Coolant Pressure Fluctuation as an External Vibration Force Perturbation
80(11)
Chapter 3 Vibration Diagnostic Features
91(28)
3.1 Dynamic System with One Degree of Freedom as a Diagnostic Model
91(4)
3.2 Vibration Diagnostic Spaces
95(7)
3.3 Integral Parameters of Resonance in a DS with One Degree of Freedom
102(1)
3.4 Relative Vibration Diagnostic Thresholds
103(8)
3.5 Considerations on Diagnostic Feature Engineering in Local Diagnostics Systems
111(4)
3.6 DS Resonance Parameters as a Function of Time
115(4)
Chapter 4 MCC Vibrations Modeling
119(10)
4.1 Mathematical Model of Interaction Between Mechanical Dynamic System and MCC Pressure Pulsations Field
119(3)
4.2 Finite Element Modeling
122(4)
4.3 Uncertainties of Mathematical Modeling
126(3)
4.3.1 External field of generating forces and interpretation of classical concept "natural frequency of oscillations of a structural element"
126(3)
Chapter 5 MCC Acoustics in Lumped Parameters
129(36)
5.1 Analytical and Empirical Approaches Applied to Description of MCC Acoustics
129(3)
5.2 Acoustic Mass, Acoustic Stiffness, Acoustic Damping as Analogs of Motion Equation Parameters, Analogs from Mechanics and Electrical Engineering
132(12)
5.3 MCC Elements in Lumped Electrical Analogies --- Pressurizer as a Helmholtz Resonator
144(16)
5.4 Fresnel Equations, Nearly Optical Analogy for Point Acoustic Inhomogeneities
160(5)
Chapter 6 Wave Equation
165(48)
6.1 Features of Wave Equation
165(8)
6.2 Particular Solutions of the Harmonic Oscillator Equation
173(2)
6.3 Types of Complex Harmonic Solutions of Wave Equations
175(2)
6.4 Fundamental Properties of Complex Harmonic Wave Representation
177(6)
6.5 Connection of Helmholtz Equation and d'Alembert Equation with Lagrange Ordinary Differential Equation of Motion --- Standing Waves in the Solution of a Homogeneous Wave Equation
183(2)
6.6 Standing Wave in the Solution of Homogeneous Wave Equation with a Single Initial Equation, d'Alembert Method
185(5)
6.7 Energy Properties of a Standing Wave
190(1)
6.8 Non-homogeneous Wave Equation
191(8)
6.8.1 Zero initial conditions
191(3)
6.8.2 General case
194(5)
6.9 Standing Waves in the Solution of a Wave Equation with Boundary Conditions --- Fourier Method
199(9)
6.10 Features of Solutions to Wave Equation
208(5)
Chapter 7 Equations of Fluid and Gas Dynamics
213(14)
7.1 Standing Waves in Solution of Fluid and Gas Dynamics Equations
213(3)
7.2 Acoustic Resistance
216(7)
7.3 Power Characteristics of Acoustic Waves
223(4)
Chapter 8 Long Lines as an Analogy to the Acoustic Medium
227(44)
8.1 Standing Wave in Solution of the Telegraph Equation System
227(9)
8.2 Long Lines with Losses
236(8)
8.3 Properties of Complex Resistance and Propagation Coefficient of the Long Line
244(5)
8.4 Absorption of Electrical Energy in Long Line and Acoustic Energy in the Pipeline Fluid
249(7)
8.5 Methods for Reducing the Standing Wave Amplitude
256(3)
8.5.1 Consensus
256(1)
8.5.2 Absorption at reflection
256(1)
8.5.3 Flow-around
257(2)
8.6 Wave Equation with Linear Parameters
259(2)
8.7 Complex Resistance Equivalent to Long Line with Point Element
261(3)
8.8 Four Pole (Two-Port) Circuit as Electrical Analogy of the Acoustic Path Element
264(7)
Chapter 9 Long Lines with Lumped Complex Resistance
271(36)
9.1 Inhomogeneities Generating a "Pure" Standing Wave
271(7)
9.2 Inhomogeneities Causing Mixed Acoustic Field
278(6)
9.3 ASW Volumetric Acoustic Inhomogeneities and Q-Factors of Their Resonances
284(5)
9.4 Branching
289(14)
9.5 A Set of Long Lines as Equivalent to VVER Circulation Loop in Electrical Analogies
303(4)
Chapter 10 Elastic Dissipative Medium. Attenuation of Acoustic Waves
307(58)
10.1 Wave Equation with Complex Characteristic Parameter
307(5)
10.2 Dispersion Relation --- Complex Function of Frequency
312(2)
10.3 Natural Oscillations of Elastic Dissipative Medium
314(8)
10.4 Forced Oscillations of Dissipative Media
322(4)
10.5 Examples of Constraint Forces
326(2)
10.6 Resonance Excitation in Case of Coincidence of MCP Set Rotational Frequency with ASW Frequency
328(3)
10.7 Wave Amplitude Attenuation Coefficient. Kirchhoff--Stokes Formula
331(4)
10.8 Derivation of Kirchhoff--Stokes Formula
335(3)
10.9 Damping and Viscosity
338(2)
10.10 Description of Viscous Medium via Diffusion Equation
340(2)
10.11 Viscosity as the Reason of Pressure Drop in Transversal Direction
342(2)
10.12 Coolant Pressure Perturbation in MCC
344(5)
10.13 Stokes' Waves --- Dispersion Properties of the Coolant in Steam Generator Heat Exchange Tubes
349(1)
10.14 Acoustic Impedance for Small-Diameter Pipelines
350(2)
10.15 Pressure Pulsation Sensor Signal Modulation Parameters
352(6)
10.16 Typical Errors in Application of Analytical Models of Elastic Media
358(7)
Chapter 11 ASW Globality-Locality
365(40)
11.1 ASWs in Loop and its Harmonics
365(6)
11.2 A Priori Qualitative Comparison of Vibration-Acoustic Properties of VVER-1200 and VVER-1000
371(5)
11.3 Basic ASW Types of VVER-1000 and WER-1200
376(6)
11.4 Experimental Loop Components of Coolant Pressure Pulsations in the VVER Main Coolant Loop
382(9)
11.5 Globality of Low ASW Types
391(14)
Chapter 12 ASW Phenomenology
405(32)
12.1 Identification of Resonance Spectral Features of Vibration Sensors and PPSs During Unit Heating Up and Archiving Full Power Operation
405(5)
12.2 Linear Approximations of Temperature Dependences of ASW Parameters in VVER-1200
410(6)
12.3 Common Signal Sources of Pressure Pulsation Sensors and Accelerometers
416(6)
12.4 Forced Oscillations of Reactor Vessel and MCP at ASW Frequencies
422(8)
12.5 Change of the Global Field of the First Loop ASW with the Change of the Number of MCP in Operation
430(7)
Chapter 13 MCP Vibrations
437(38)
13.1 Classes of Vibration Diagnostic Features of MCP
437(5)
13.2 Vibration Amplitude and Power
442(3)
13.3 Pressure Pulsations of Coolant in MCC and MCP Vibrations in a Wide Frequency Range
445(14)
13.4 Motion Trajectory of AEM and MCP Shaft
459(3)
13.5 Vibrations of Operating MCP and Vibrations of Turned off MCP affected by Coolant Counterflow --- The Single Operating MCP as a Source of Coherent Traveling Pressure Waves
462(2)
13.6 Amplitude Modulation of Oscillations of the Switched-off MCP
464(4)
13.7 Detection of Cavitation Effects according to PPS Signals
468(7)
Chapter 14 Experimental Results on VVER-1200 Vibration Acoustics
475(50)
14.1 Vibration Acoustics Tasks during Commissioning Measurements
475(3)
14.2 Diagnostic Information, Obtained During Joint Measurements of Commissioning System Signals and Standard Diagnostic System Signals
478(5)
14.3 Example of Identifying the Primary Source of Joint Oscillations
483(4)
14.4 Vibration Characteristics during lifting the Reactor Plant Power from MCC to 100% ASW Resonance Frequency as a Diagnostic Feature of Coolant State
487(8)
14.5 Vibration Measurements During Power up stages of Novovoronezh NPP-2 Unit 1-2
495(5)
14.5.1 Reactor vessel oscillations
495(5)
14.6 Control of CPS Control Rods in Power Ascension Mode of Reactor Plant according to VNDS Vibration Channels
500(25)
14.6.1 Vibration by neutron measurements of central ASW frequencies
504(21)
Chapter 15 Mutual Oscillations of Reactor Vessel and Reactor Core Barrel
525(24)
15.1 Structural Features of Reactor Vessel and RCB Attachment Points
525(4)
15.2 Oscillations of Reactor Vessel and RCB at Different Numbers of MCP Sets in Operation
529(13)
15.3 Neutron-Vibration Measurements at 100% Power, Novo Voronezh NPP Unit 6
542(7)
References 549(30)
Index 579