Muutke küpsiste eelistusi

E-raamat: Video Mining

Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Expansions of 11 selected papers explore recent developments in applying theories and techniques of data mining discovering and describing patterns of interest in data to data consisting of video sequences, with or without an audio component. Contributors from various industries and universities, mostly in the US, consider video browsing using multiple synchronized views; the physical setting as a video mining primitive; temporal video boundaries; video summarization using activity and audio descriptors; content analysis using multimodal information; video categorization using semantics and semiotics; and other topics. Annotation (c) Book News, Inc., Portland, OR (booknews.com)

Video Mining is an essential reference for the practitioners and academicians in the fields of multimedia search engines. Half a terabyte or 9,000 hours of motion pictures are produced around the world every year. Furthermore, 3,000 television stations broadcasting for twenty-four hours a day produce eight million hours per year, amounting to 24,000 terabytes of data. Although some of the data is labeled at the time of production, an enormous portion remains unindexed. For practical access to such huge amounts of data, there is a great need to develop efficient tools for browsing and retrieving content of interest, so that producers and end users can quickly locate specific video sequences in this ocean of audio-visual data. Video Mining is important because it describes the main techniques being developed by the major players in industry and academic research to address this problem. It is the first time research from these leaders in the field developing the next-generation multimedia search engines is being described in great detail and gathered into a single volume. Video Mining will give valuable insights to all researchers and non-specialists who want to understand the principles applied by the multimedia search engines that are about to be deployed on the Internet, in studios' multimedia asset management systems, and in video-on-demand systems.
Preface ix
Efficient Video Browsing
1(30)
Arnon Amir
Savitha Srinivasan
Dulce Ponceleon
Beyond Key-Frames: The Physical Setting as a Video Mining Primitive
31(30)
Aya Aner-Wolf
John R. Kender
Temporal Video Boundaries
61(30)
Nevenka Dimitrova
Lalitha Agnihotri
Radu Jasinschi
Video Summarization using MPEG-7 Motion Activity and Audio Descriptors
91(32)
Ajay Divakaran
Kadir A. Peker
Regunathan Radhakrishnan
Ziyou Xiong
Romain Cabasson
Movie Content Analysis, Indexing and Skimming Via Multimodal Information
123(32)
Ying Li
Shrikanth Narayanan
C.-C. Jay Kuo
Video OCR: A Survey and Practitioner's Guide
155(30)
Rainer Lienhart
Video Categorization Using Semantics and Semiotics
185(34)
Zeeshan Rasheed
Mubarak Shah
Understanding the Semantics of Media
219(34)
Malcolm Slaney
Dulce Ponceleon
James Kaufman
Statistical Techniques for Video Analysis and Searching
253(26)
John R. Smith
Ching- Yung Lin
Milind Naphade
Apostol (Paul) Natsev
Belle Tseng
Mining Statistical Video Structures
279(30)
Lexing Xie
Shih-Fu Chang
Ajay Divakaran
Huifang Sun
Pseudo-Relevance Feedback for Multimedia Retrieval
309(30)
Rong Yan
Alexander G. Hauptmann
Rong Jin
Index 339