Foreword |
|
xi | |
About the authors |
|
xv | |
Preface |
|
xvii | |
Acknowledgements |
|
xix | |
Notation |
|
xxi | |
Acronyms |
|
xxiii | |
|
1 What is video tracking? |
|
|
1 | (14) |
|
|
1 | (1) |
|
1.2 The design of a video tracker |
|
|
2 | (5) |
|
|
2 | (4) |
|
|
6 | (1) |
|
|
7 | (5) |
|
1.3.1 Single-target tracking |
|
|
7 | (3) |
|
1.3.2 Multi-target tracking |
|
|
10 | (1) |
|
|
11 | (1) |
|
1.4 Interactive versus automated tracking |
|
|
12 | (1) |
|
|
13 | (2) |
|
|
15 | (12) |
|
|
15 | (1) |
|
2.2 Media production and augmented reality |
|
|
16 | (1) |
|
2.3 Medical applications and biological research |
|
|
17 | (3) |
|
2.4 Surveillance and business intelligence |
|
|
20 | (1) |
|
2.5 Robotics and unmanned vehicles |
|
|
21 | (1) |
|
2.6 Tele-collaboration and interactive gaming |
|
|
22 | (1) |
|
2.7 Art installations and performances |
|
|
22 | (1) |
|
|
23 | (4) |
|
|
24 | (3) |
|
|
27 | (44) |
|
|
27 | (1) |
|
3.2 From light to useful information |
|
|
28 | (4) |
|
|
28 | (2) |
|
3.2.2 The appeamnce of targets |
|
|
30 | (2) |
|
|
32 | (18) |
|
|
32 | (7) |
|
3.3.2 Photometric colour invariants |
|
|
39 | (3) |
|
3.3.3 Gradient and derivatives |
|
|
42 | (5) |
|
|
47 | (2) |
|
|
49 | (1) |
|
|
50 | (11) |
|
|
50 | (1) |
|
3.4.2 Interest points and interest regions |
|
|
51 | (5) |
|
|
56 | (5) |
|
|
61 | (4) |
|
|
62 | (1) |
|
|
63 | (2) |
|
|
65 | (6) |
|
|
65 | (6) |
|
|
71 | (18) |
|
|
71 | (1) |
|
|
72 | (3) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
74 | (1) |
|
4.3 Appearance representation |
|
|
75 | (9) |
|
|
76 | (2) |
|
|
78 | (5) |
|
4.3.3 Coping with appearance changes |
|
|
83 | (1) |
|
|
84 | (5) |
|
|
85 | (4) |
|
|
89 | (26) |
|
|
89 | (1) |
|
5.2 Single-hypothesis methods |
|
|
90 | (8) |
|
5.2.1 Gradient-based trackers |
|
|
90 | (5) |
|
5.2.2 Bayes tracking and the Kalman filter |
|
|
95 | (3) |
|
5.3 Multiple-hypothesis methods |
|
|
98 | (13) |
|
|
99 | (2) |
|
|
101 | (4) |
|
|
105 | (6) |
|
|
111 | (4) |
|
|
111 | (4) |
|
|
115 | (16) |
|
|
115 | (1) |
|
|
116 | (3) |
|
6.2.1 Tracker-level fusion |
|
|
118 | (1) |
|
6.2.2 Measurement-level fusion |
|
|
118 | (1) |
|
6.3 Feature fusion in a Particle Filter |
|
|
119 | (9) |
|
6.3.1 Fusion of likelihoods |
|
|
119 | (2) |
|
6.3.2 Multi-feature resampling |
|
|
121 | (2) |
|
6.3.3 Feature, reliability |
|
|
123 | (3) |
|
|
126 | (1) |
|
|
126 | (2) |
|
|
128 | (3) |
|
|
128 | (3) |
|
7 Multi-target management |
|
|
131 | (38) |
|
|
131 | (1) |
|
7.2 Measurement validation |
|
|
132 | (2) |
|
|
134 | (9) |
|
|
134 | (2) |
|
|
136 | (3) |
|
7.3.3 Multiple-hypothesis tracking |
|
|
139 | (4) |
|
7.4 Random Finite Sets for tracking |
|
|
143 | (2) |
|
7.5 Probabilistic Hypothesis Density filter |
|
|
145 | (2) |
|
7.6 The Particle PHD filter |
|
|
147 | (16) |
|
7.6.1 Dynamic and observation models |
|
|
149 | (2) |
|
7.6.2 Birth and clutter models |
|
|
151 | (1) |
|
7.6.3 Importance sampling |
|
|
151 | (1) |
|
|
152 | (4) |
|
7.6.5 Particle clustering |
|
|
156 | (4) |
|
|
160 | (3) |
|
|
163 | (6) |
|
|
165 | (4) |
|
|
169 | (16) |
|
|
169 | (1) |
|
8.2 Tracking with context modelling |
|
|
170 | (3) |
|
8.2.1 Contextual information |
|
|
170 | (1) |
|
8.2.2 Influence of the context |
|
|
171 | (2) |
|
8.3 Birth and clutter intensity estimation |
|
|
173 | (11) |
|
|
173 | (6) |
|
|
179 | (2) |
|
8.3.3 Tracking with contextual feedback |
|
|
181 | (3) |
|
|
184 | (1) |
|
|
184 | (1) |
|
|
185 | (38) |
|
|
185 | (1) |
|
9.2 Analytical versus empirical methods |
|
|
186 | (1) |
|
|
187 | (3) |
|
|
190 | (6) |
|
9.4.1 Localisation scores |
|
|
190 | (3) |
|
9.4.2 Classification scores |
|
|
193 | (3) |
|
|
196 | (3) |
|
|
197 | (1) |
|
9.5.2 Statistical significance |
|
|
198 | (1) |
|
|
198 | (1) |
|
|
199 | (8) |
|
9.6.1 Low-level protocols |
|
|
199 | (4) |
|
9.6.2 High-level protocols |
|
|
203 | (4) |
|
|
207 | (13) |
|
|
207 | (5) |
|
9.7.2 Human-computer interaction |
|
|
212 | (3) |
|
|
215 | (5) |
|
|
220 | (3) |
|
|
220 | (3) |
|
|
223 | (2) |
|
|
225 | (4) |
|
Appendix A Comparative results |
|
|
229 | (34) |
|
A.1 Single versus structural histogram |
|
|
229 | (4) |
|
|
229 | (1) |
|
|
230 | (3) |
|
A.2 Localisation algorithms |
|
|
233 | (5) |
|
|
233 | (2) |
|
|
235 | (3) |
|
|
238 | (10) |
|
|
238 | (2) |
|
|
240 | (2) |
|
A.3.3 Adaptive versus non-adaptive tracker |
|
|
242 | (6) |
|
A.3.4 Computational complexity |
|
|
248 | (1) |
|
|
248 | (9) |
|
|
248 | (2) |
|
|
250 | (1) |
|
|
251 | (4) |
|
|
255 | (2) |
|
|
257 | (6) |
|
|
257 | (1) |
|
|
257 | (4) |
|
|
261 | (2) |
Index |
|
263 | |