Muutke küpsiste eelistusi
  • Formaat - EPUB+DRM
  • Hind: 135,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Power Systems
  • Ilmumisaeg: 28-Nov-2020
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030579616

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a thorough understanding of the basic principles, synthesis, analysis, and control of virtual inertia systems. It uses the latest technical tools to mitigate power system stability and control problems under the presence of high distributed generators (DGs) and renewable energy sources (RESs) penetration.





This book uses a simple virtual inertia control structure based on the frequency response model, complemented with various control methods and algorithms to achieve an adaptive virtual inertia control respect to the frequency stability and control issues. The chapters capture the important aspects in virtual inertia synthesis and control with the objective of solving the stability and control problems regarding the changes of system inertia caused by the integration of DGs/RESs. Different topics on the synthesis and application of virtual inertia are thoroughly covered with the description and analysis of numerous conventional and modern control methods forenhancing the full spectrum of power system stability and control. Filled with illustrative examples, this book gives the necessary fundamentals and insight into practical aspects.





This book stimulates further research and offers practical solutions to real-world power system stability and control problems with respect to the system inertia variation triggered by the integration of RESs/DGs.  It will be of use to engineers, academic researchers, and university students interested in power systems dynamics, analysis, stability and control.
1 An Overview of Virtual Inertia and Its Control
1(12)
1.1 Introduction
1(3)
1.2 Overview on Virtual Inertia
4(2)
1.3 Literature Review on Virtual Inertia
6(2)
1.4 Summary
8(1)
References
9(4)
2 Fundamental Concepts of Inertia Power Compensation and Frequency Control
13(48)
2.1 Fundamental Frequency Regulation
13(3)
2.2 Inertia Power Compensation
16(5)
2.2.1 Calculation of Inertia Constant
19(1)
2.2.2 Minimum Inertia Levels
19(2)
2.3 Primary and Secondary Control
21(3)
2.4 Structure of Frequency Response Model
24(4)
2.5 Frequency Regulation in a Single-Area Power System
28(4)
2.6 Frequency Regulation in Interconnected Power Systems
32(4)
2.7 Analysis of Steady-State Frequency Response
36(6)
2.8 Participation Factor for Frequency Control
42(1)
2.9 Physical Constraints for Frequency Control
43(3)
2.9.1 Governor Dead Band and Generation Rate
43(1)
2.9.2 Time Delay
44(2)
2.10 Generation Droop Characteristics
46(4)
2.11 Reserve Power
50(4)
2.11.1 Frequency Operating Standards
53(1)
2.12 Summary
54(3)
References
57(4)
3 Virtual Inertia Synthesis for a Single-Area Power System
61(30)
3.1 Fundamental Virtual Inertia Synthesis and Control
61(5)
3.2 Droop Characteristics of Virtual Inertia Control
66(2)
3.3 Frequency Regulation for Virtual Inertia Synthesis
68(2)
3.4 Frequency Response Model for Virtual Inertia Control
70(1)
3.5 Frequency Analysis for Virtual Inertia Control
71(3)
3.6 State-Space Modeling of a Single Area Power System
74(2)
3.7 Simulation Results
76(9)
3.7.1 Effect of Virtual Inertia Control Droop
81(1)
3.7.2 Effect of Virtual Inertia Constant
82(1)
3.7.3 Effect of Virtual Damping
83(1)
3.7.4 Effect of Time Delay
84(1)
3.8 Summary
85(3)
References
88(3)
4 Multiple-Virtual Inertia Synthesis for Interconnected Systems
91(20)
4.1 Introduction to Interconnected Systems
91(2)
4.2 Modeling of Multiple-Virtual Inertia Control
93(4)
4.3 State-Space Modeling of Interconnected Systems
97(2)
4.4 Multiple Virtual Inertia Control Droops
99(3)
4.4.1 Sensitivity Analysis for Multiple Inertia Control Units
100(2)
4.5 Simulation Results
102(6)
4.5.1 Efficacy of Multiple-Virtual Inertia Control
102(1)
4.5.2 Stability Analysis Under Continuous Disturbances
103(5)
4.6 Summary
108(1)
References
109(2)
5 Application of PI/PID Control for Virtual Inertia Synthesis
111(30)
5.1 Introduction to PI/PID Control
111(2)
5.2 Fundamental Feedback Control
113(1)
5.3 Actions of PI/PID Control
114(3)
5.3.1 Proportional Action
114(1)
5.3.2 Integral Action
115(1)
5.3.3 Derivative Action
116(1)
5.4 Structures of PI/PID Control
117(3)
5.4.1 Modeling of PI Controller
117(1)
5.4.2 Modeling of PID Controller
117(3)
5.5 Tuning Rules for PI/PID Control
120(7)
5.5.1 Classical Tuning
120(2)
5.5.2 Modern Tuning
122(5)
5.6 Modeling of PI/PID-Based Virtual Inertia Control
127(2)
5.7 MATLAB-Based PI/PID Tuning Approach
129(6)
5.7.1 Optimal PI Control Gains
130(2)
5.7.2 Optimal PID Control Gains
132(3)
5.8 Simulation Results
135(3)
5.9 Summary
138(1)
References
139(2)
6 Model Predictive Control for Virtual Inertia Synthesis
141(26)
6.1 Introduction to Model Predictive Control
141(3)
6.2 Fundamental MPC Strategy
144(3)
6.3 MPC Disturbances
147(1)
6.4 MPC Constraints
148(1)
6.5 MPC-Based Virtual Inertia Control
148(2)
6.6 MATLAB-Based MPC
150(5)
6.7 Simulation Results
155(9)
6.7.1 Efficacy of MPC-Based Virtual Inertia Control
155(2)
6.7.2 Robustness Against Inertia and Damping Reduction
157(2)
6.7.3 Robustness Against Time Delay
159(1)
6.7.4 Robustness Against High Penetration of Renewables
160(4)
6.8 Summary
164(1)
References
165(2)
7 Fuzzy Logic Control for Virtual Inertia Synthesis
167(36)
7.1 Introduction to Fuzzy Logic Control
168(2)
7.2 Fundamental Fuzzy Logic
170(11)
7.2.1 Fuzzy Set
170(2)
7.2.2 Shapes of Fuzzy Set
172(4)
7.2.3 Fuzzy Rule Base
176(1)
7.2.4 Fuzzification
177(1)
7.2.5 Fuzzy Inference System
178(2)
7.2.6 Defuzzification
180(1)
7.3 Fuzzy-Based Virtual Inertia Synthesis
181(5)
7.4 MATLAB-Based Fuzzy Logic Control
186(1)
7.5 Simulation Results
187(11)
7.5.1 Effect of Low RESs Penetration
188(4)
7.5.2 Effect of High RESs Penetration
192(2)
7.5.3 Mismatch Parameters of Primary/Secondary Control
194(4)
7.6 Summary
198(1)
References
198(5)
8 Synthesis of Robust Virtual Inertia Control
203(24)
8.1 Introduction to Robust Virtual Inertia Control
203(3)
8.2 H∞ Robust Control Theory
206(3)
8.3 Design of H∞ Robust Virtual Inertia Control
209(1)
8.4 Modeling of Uncertainty and Disturbance
209(3)
8.4.1 H∞ Controller Design
211(1)
8.5 Closed-Loop Nominal Stability and Performance
212(2)
8.5.1 Closed-Loop Robust Stability and Performance
212(2)
8.6 Order Reduction of H∞ Controller
214(1)
8.7 Simulation Results
215(9)
8.7.1 Effect of Abrupt Change
216(2)
8.7.2 High Penetration of RESs and Loads
218(6)
8.8 Summary
224(1)
References
224(3)
9 Optimization of Virtual Inertia Control Considering System Frequency Protection Scheme
227(22)
9.1 Introduction
227(2)
9.2 Particle Swarm Optimization
229(2)
9.3 Underfrequency Load Shedding (UFLS)
231(2)
9.4 Design of Virtual Inertia Control Optimization Considering System Frequency Protection
233(2)
9.5 System Modeling
235(3)
9.5.1 Test System
235(1)
9.5.2 Virtual Inertia Control Model
236(2)
9.6 Simulation Results
238(7)
9.6.1 Default High Inertia Condition and the Result of Optimization
238(2)
9.6.2 Low Inertia Condition
240(4)
9.6.3 Impact on the Existing Underfrequency Load Shedding (UFLS) Scheme
244(1)
9.7 Summary
245(1)
References
245(4)
10 Technical Challenges and Further Research in Virtual Inertia Control
249(8)
10.1 Introduction
249(1)
10.2 Main Technical Aspects of Virtual Inertia Control
250(3)
10.2.1 Improvement in Modeling, Aggregation, and Control of Virtual Inertia Control
250(1)
10.2.2 Optimization of Virtual Inertia Control
251(1)
10.2.3 System Inertia Estimation
252(1)
10.3 Supporting Aspects for the Integration of Virtual Inertia Control Systems
253(1)
10.3.1 Economic Valuation for Inertia Service
253(1)
10.3.2 Standard and Regulation
254(1)
10.4 Summary
254(1)
References
255(2)
Appendix 257