Muutke küpsiste eelistusi

E-raamat: Virtual Reality: Recent Advancements, Applications and Challenges

Edited by , Edited by
  • Formaat: 235 pages
  • Ilmumisaeg: 01-Sep-2022
  • Kirjastus: River Publishers
  • ISBN-13: 9781000793017
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 95,67 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 235 pages
  • Ilmumisaeg: 01-Sep-2022
  • Kirjastus: River Publishers
  • ISBN-13: 9781000793017
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Although the emergence of virtual reality (VR) goes back to the 1960s, with the recent availability of low-cost and high-accuracy systems it has become increasingly prevalent in a wide variety of areas; with uses ranging from training and education to rehabilitation and entertainment. Nowadays, there are many companies that have their own VR systems with various types of headsets and controllers. This has shaped how VR is being used today and how we interact with the latest generation VR systems.

With the rapidly evolving dynamics gained through technological advancements, VR is projected to grow and transform the way humans do everyday tasks both in the workplace and in personal lives. In addition to the VR headsets, there are now augmented reality (AR) headsets that allow the user to see their real-worldsurroundings while also viewing computer generated imagery. This leads to an enhanced user experience. This book aims to provide a comprehensive update of the latest scientific research, mainly in VR and partly in AR, from the last five years. The content is themed around the application areas of training, education, robotics, health and well-being, and user experience.

This book aims to provide a comprehensive update of the latest scientific research, mainly in Virtual Reality and partly in Augmented Reality, from the last five years. The content is themed around the application areas of training, education, robotics, health and well-being, and user experience.
Preface xiii
Acknowledgments xv
List of Contributors
xvii
List of Figures
xxi
List of Tables
xxix
List of Abbreviations
xxxi
1 Recent Application Areas, Interaction Techniques and User Interfaces in Virtual Reality
1(34)
Yafei Xu
Limin Zhang
Lila Bozgeyikli
1.1 Introduction
1(1)
1.2 Education and Training with Virtual Reality
1(4)
1.2.1 Language Learning in VR
1(2)
1.2.2 Learning Physics Concepts in VR
3(1)
1.2.3 Learning How to use a Cooking Knife in VR Through Intuitive Tangible User Interfaces
4(1)
1.3 Assessment and Treatment of Cognitive Disorders in VR
5(3)
1.3.1 A Review on Recent Works on the Assessment and Treatment of Cognitive Disorders in VR
5(2)
1.3.2 Improving Lives of Individuals with Alzheimer's Disease with VR
7(1)
1.4 Assessment and Treatment of Eating Disorders with VR
8(4)
1.4.1 Cue Exposure Therapy in VR for Undereating Disorders
8(2)
1.4.2 Using VR for Jogging for Exposure to Acute Urge to be Physically Active in Patients with Eating Disorders
10(1)
1.4.3 Outcome at Six Month Follow Up After VR Therapy for Undereating Disorders
11(1)
1.5 Use of VR for Increasing Empathy and Perspective Taking Ability
12(2)
1.5.1 Preventing Bullying with VR
13(1)
1.6 Use of VR for Entertainment-Based Activities
14(3)
1.6.1 VR as an In-Car Entertainment Medium
14(1)
1.6.2 Shopping in VR
15(1)
1.6.3 VR for Parasailing
16(1)
1.7 Interaction and User Interfaces in VR
17(8)
1.7.1 Touch-Based UI for Mobile VR
17(1)
1.7.2 Mobile Ungrounded Force Haptic Feedback in VR
17(2)
1.7.3 Including Virtual Representation of Hands while Typing in VR with a Physical Keyboard
19(1)
1.7.4 Haptic Revolver for Haptic Feedback in VR
19(1)
1.7.5 Bimanual Haptic Controlling in VR
20(1)
1.7.6 Data Visualization in VR
21(1)
1.7.7 Eyes-Free Object Manipulation in VR
22(1)
1.7.8 Breathing-Based Input in VR
23(1)
1.7.9 360-Degrees Browsing in VR
24(1)
1.8 Conclusion
25(10)
References
25(10)
2 Digital and Visual Literacy, Video Games, and Virtual Reality
35(20)
Jack Clark
2.1 Introduction
36(1)
2.2 The Growth of Visual Literacy
37(1)
2.3 Thinking in Pictures
38(1)
2.4 Comic Books and Film Studies
39(2)
2.5 Video Games
41(1)
2.6 Video Game Learning
41(1)
2.7 Pretend Play and Situated Learning
42(1)
2.8 Collaboration
43(1)
2.9 Autonomy
44(1)
2.10 Self-Regulated Learning
44(2)
2.11 Observational vs. Participatory Learning and Volitional Control
46(1)
2.12 Current Benefits and Applications of Virtual Reality
47(1)
2.13 Virtual Reality in the Future
48(1)
2.14 Conclusion
49(6)
References
50(5)
3 Virtual Reality and Movement Disorders
55(44)
Rachneet Kaur
Manuel E. Hernandez
Richard Sowers
3.1 Introduction
56(3)
3.1.1 Fear of Falling
56(1)
3.1.2 Virtual Reality
57(1)
3.1.3 Brain-Computer Interfaces
58(1)
3.2 Goals and Contributions
59(1)
3.3 Computational Infrastructure
60(1)
3.4 Experimental Setups
61(6)
3.4.1 Visual Cliffs While Walking Experiment
61(3)
3.4.2 Height Control Experiment
64(3)
3.5 Data Analysis
67(10)
3.5.1 EEG Processing
67(10)
3.5.2 Validation
77(1)
3.6 Experimental Results
77(3)
3.6.1 Visual Cliffs While Walking Experiment
77(1)
3.6.2 Height Control Experiment
78(2)
3.7 Discussion
80(2)
3.7.1 Medical Care Costs
80(1)
3.7.2 Clinical Implications of the Experimental Setups
81(1)
3.8 Challenges, Open-Questions and Proposals
82(5)
3.8.1 Procedural Treatment of Artifacts
82(1)
3.8.2 Response of the Brain and Causality
83(1)
3.8.3 Response of the Brain and Low-Rank Description
83(1)
3.8.4 Response of the Brain, Local Causality and Persistent Homology
84(1)
3.8.5 Feedback Signal
85(1)
3.8.6 Machine Learning
86(1)
3.9 Conclusions
87(12)
References
87(12)
4 Robotics in Virtual Reality
99(80)
4.1 Body-in-the-Loop Control of Soft Robotic Exoskeletons During Virtual Manual Labor Tasks
99(17)
Manuel E. Hernandez
Richard Sowers
Nicholas Thompson
Girish Krishnan
Elizabeth T. Hsiao-Wecksler
4.1.1 Introduction
100(2)
4.1.2 Use of Robotics to Prevent Injury in Industry
102(1)
4.1.3 Use of Virtual Reality in Evaluating the Effect of Stress and Anxiety in Industrial Settings
102(2)
4.1.4 Applications of Integrated Virtual Reality and Robotics in Industry
104(1)
4.1.4.1 Body-in-the-loop control of human-machine systems
104(1)
4.1.4.2 Soft robotic exoskeleton actuation
104(1)
4.1.4.3 FREE architectures for stiffness modulation
105(2)
4.1.4.4 Nested FREE architectures for actuating joints
107(1)
4.1.5 Conclusions
108(1)
References
109(7)
4.2 Towards Mixed Reality System with Quadrotor: Autonomous Drone Positioning in Real and Virtual
116(8)
German Espinosa
Michael Rubenstein
4.2.1 A Introduction
116(1)
4.2.2 The Vive System
117(1)
4.2.3 The Device
118(1)
4.2.4 From 2D to 3D
118(1)
4.2.5 Results
119(2)
4.2.6 In Action
121(1)
4.2.7 Conclusion
122(1)
4.2.8 Designs and Source Code
122(1)
References
122(2)
4.3 Augmented Reality Interaction vs. Tablet Computer Control as Intuitive Robot Programming Concept
124(18)
Franz Steinmetz
Annika Wollschldger
4.3.1 Introduction
124(2)
4.3.2 Related Work
126(1)
4.3.2 A User interfaces
126(1)
4.3.2.2 Augmented reality in human-robot interaction
127(1)
4.3.3 Interaction Concept
127(1)
4.3.3.1 Input directions
128(1)
4.3.3.2 Allocation of input directions
129(1)
4.3.3.3 Design of virtual elements
129(1)
4.3.3.4 Display orientation and position
130(1)
4.3.3.5 Push detection
130(1)
4.3.3.6 Gesture detection
130(1)
4.3.4 System Implementation
131(1)
4.3.4.1 Input directions
131(1)
4.3.4.2 Allocation of input directions
131(1)
4.3.4.3 Design of virtual elements
132(1)
4.3.4.4 Display orientation and position
133(1)
4.3.4.5 Push detection
134(1)
4.3.4.6 Gesture detection
134(1)
4.3.5 Evaluation
134(1)
4.3.6 Results
135(1)
4.3.7 Discussion
136(1)
4.3.7.1 Objective data
136(1)
4.3.7.2 Subjective data
137(1)
4.3.8 Conclusion
138(1)
References
139(3)
4.4 A Multimodal System Using Augmented Reality, Gestures, and Tactile Feedback for Robot Trajectory Programming and Execution
142(17)
Wesley P. Chan
Camilo Perez Quintero
Matthew K. X. J. Pan
Maram Sakr
H. F. Machiel Van der Loos
Elizabeth Croft
4.4.1 Introduction
142(2)
4.4.2 Related Work
144(1)
4.4.2.1 Augmented reality
144(1)
4.4.2.2 Force feedback
144(1)
4.4.2.3 Haptics
145(1)
4.4.2.4 Gestures
145(1)
4.4.3 System
146(1)
4.4.3.1 Hardware
146(1)
4.4.3.2 Software
146(4)
4.4.4 Pilot
150(2)
4.4.5 Analysis
152(1)
4.4.6 Result
152(1)
4.4.7 Discussion
153(2)
4.4.8 Conclusion and Future Work
155(1)
References
155(4)
4.5 Augmented Reality Instructions for Shared Control Hand-held Robotic System
159(8)
Joshua Elsdon
Yiannis Demiris
4.5.1 Introduction
159(1)
4.5.1.1 Project background
160(1)
4.5.1.2 Related work
161(1)
4.5.2 Experimental Setup
162(1)
4.5.3 Results
163(1)
4.5.3.1 Speed regulation
164(1)
4.5.3.2 Orientation accuracy
165(1)
4.5.4 Conclusion
165(1)
References
166(1)
4.6 Augmented Musical Reality via Smart Connected Pianos
167(12)
Daniel M. Lofaro
Frank Lee
Edgar Endress
Chung Hyuk Park
4.6.1 Introduction
167(2)
4.6.2 Methodology
169(1)
4.6.2.1 Measuring emotion
169(3)
4.6.2.2 Visual feedback
172(1)
4.6.2.3 Real-time control
172(2)
4.6.3 Conclusion
174(1)
References
174(5)
5 Enactive Steering of Simulations for Scientific Computing
179(26)
Brandon Mechtley
Julian Stein
Todd Ingalls
Sha Xin Wei
Christopher Roberts
5.1 Introduction
179(6)
5.1.1 Experiential Media Systems
181(2)
5.1.2 Steerable Scientific Simulations and Abductive Method
183(2)
5.2 EMA: An Experiential Model of the Atmosphere
185(8)
5.2.1 Visualization
186(3)
5.2.2 Sonification
189(2)
5.2.3 Enactive Scenarios
191(2)
5.3 The SC Responsive Media Library
193(5)
5.3.1 Architecture
194(1)
5.3.2 Audio Instruments
195(1)
5.3.3 Video Instruments
195(1)
5.3.4 Lighting Instruments
195(1)
5.3.5 Physical Sensors and Actuators
196(1)
5.3.6 The SC State Engine: Continuously Evolving Media
196(2)
5.4 Moving Beyond Point-and-Click Data Visualization
198(7)
References
200(5)
6 Improving User Experience in Virtual Reality
205(52)
6.1 Presence and Performance in the TRUST Game
205(21)
Fotis Liarokapis
Victoria Uren
Panagiotis Petridis
Adekunle Adeniyi Ajibade
6.1.1 Introduction
205(1)
6.1.2 Examples
206(1)
6.1.2.1 Ectopia
206(1)
6.1.2.2 Anno 2070
207(1)
6.1.2.3 iSeed
207(1)
6.1.2.4 The code of everand
208(1)
6.1.3 TRUST Game
208(2)
6.1.4 Presence
210(2)
6.1.5 Performance
212(1)
6.1.6 Method
213(1)
6.1.7 Results
214(1)
6.1.7.1 Presence results
214(1)
6.1.7.2 NASA TLX results
215(2)
6.1.8 Analysis
217(1)
6.1.8.1 Correlation
218(2)
6.1.8.2 Parallel coordinates
220(1)
6.1.9 Discussion and Conclusions
220(3)
References
223(3)
6.2 The Portable VR4VR: A Virtual Reality System for Vocational Rehabilitation
226(15)
Rubein Shaikh
Paul Mattioli
Katey Corbett
Lila Bozgeyikli
Evren Bozgeyikli
Redwan Alqasemi
6.2.1 Introduction
226(2)
6.2.2 Related Work
228(1)
6.2.3 Design Aspects of the Portable VR4VR
229(1)
6.2.3.1 Shelving skill module
229(1)
6.2.3.2 Environmental awareness skill module
229(1)
6.2.3.3 Money management skill module
230(1)
6.2.3.4 Cleaning skill module
230(1)
6.2.3.5 Loading the back of a truck skill module
230(1)
6.2.3.6 Social skills skill module
230(1)
6.2.3.7 Job interview skill module
230(1)
6.2.3.8 Distracters
230(1)
6.2.4 Technical Aspects of the Portable VR4VR
231(1)
6.2.4.1 System components
231(1)
6.2.4.2 Implementation
232(1)
6.2.5 User Study
233(5)
6.2.6 Conclusion
238(1)
6.2.7 Future Works
238(1)
References
238(3)
6.3 VRTouched: Towards Exploring Effects of Tactile Communication with Virtual Robots on User Experience in Virtual Reality
241(7)
Evren Bozgeyikli
6.3.1 Introduction
241(1)
6.3.2 Background
242(1)
6.3.3 The VRTouched System
242(1)
6.3.3.1 Design and components of the VRTouched system
243(1)
6.3.3.2 Challenges
244(1)
6.3.4 Conclusion and Future Work
244(1)
References
244(4)
6.4 Emerging Challenges for HCI: Enabling Effective Use of VR in Education and Training
248(9)
Neil A. Gordon
Mike Brayshaw
6.4.1 Introduction
248(1)
6.4.1.1 Virtual reality and education
249(1)
6.4.1.2 Usability and HCI evaluation
249(1)
6.4.1.3 Enquiry-based learning
250(1)
6.4.2 Virtual Learning and Training Spaces
251(1)
6.4.3 Integrating XR into a VLE
252(1)
6.4.4 Conclusions
253(1)
References
254(3)
Index 257(2)
About the Editors 259
Lila Bozgeyikli, Ren Bozgeyikli