Muutke küpsiste eelistusi

E-raamat: Virtual Testing and Predictive Modeling: For Fatigue and Fracture Mechanics Allowables

  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Jun-2009
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387959245
  • Formaat - PDF+DRM
  • Hind: 122,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Jun-2009
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387959245

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This overview of cost- and time-efficient methods to obtain fatigue and fracture data introduces two virtual testing techniques. It includes a chapter devoted to the functionalization process as well as coverage of verification methods.



Thematerialsusedinmanufacturingtheaerospace,aircraft,automobile,andnuclear parts have inherent aws that may grow under uctuating load environments during the operational phase of the structural hardware. The design philosophy, material selection, analysis approach, testing, quality control, inspection, and manufacturing are key elements that can contribute to failure prevention and assure a trouble-free structure. To have a robust structure, it must be designed to withstand the envir- mental load throughout its service life, even when the structure has pre-existing aws or when a part of the structure has already failed. If the design philosophy of the structure is based on the fail-safe requirements, or multiple load path design, partial failure of a structural component due to crack propagation is localized and safely contained or arrested. For that reason, proper inspection technique must be scheduled for reusable parts to detect the amount and rate of crack growth, and the possible need for repairing or replacement of the part. An example of a fail-sa- designed structure with crack-arrest feature, common to all aircraft structural parts, is the skin-stiffened design con guration. However, in other cases, the design p- losophy has safe-life or single load path feature, where analysts must demonstrate that parts have adequate life during their service operation and the possibility of catastrophic failure is remote. For example, all pressurized vessels that have single load path feature are classi ed as high-risk parts. During their service operation, these tanks may develop cracks, which will grow gradually in a stable manner.
1 Virtual Testing and Its Application in Aerospace Structural Parts
1
Bahram Farahmand
1.1 Introduction to the Virtual Testing
2
1.2 Virtual Testing Theory and Fracture Toughness
2
1.3 The Extended Griffith Theory and Fracture Toughness
3
1.4 Extension of Farahmand's Theory to Fatigue Crack Growth Rate Data
6
1.4.1 The Accelerated Region and Fracture Toughness
6
1.4.2 The Paris Constants, C and n
7
1.4.3 The Threshold Value (Region I)
8
1.4.4 The da/dN Versus ΔK from Virtual Testing Against Test Data
9
1.5 Application of Virtual Testing in Aerospace Industry: Introduction
12
1.5.1 Background
13
1.5.2 Manufacturing Process and Plastic Deformation of COPV Liner
14
1.5.3 Generating Fracture Allowables of Inconel 718 of COPV Liner Through Virtual Testing Technique
16
1.5.4 Generating Fracture Allowables of 6061-T6 Aluminum Tank Through Virtual Testing Technique
20
1.6 Summary and Future Work
22
Appendix
23
References
28
2 Tools for Assessing the Damage Tolerance of Primary Structural Components
29
R. Jones and D. Peng
2.1 Introduction
29
2.2 An Equivalent Block Method for Predicting Fatigue Crack Growth
32
2.3 Fatigue Crack Growth under Variable Amplitude Loading
33
2.3.1 Fatigue Crack Growth in an F/A-18 Aircraft Bulkhead
36
2.3.2 Crack Growth in Mil Annealed Ti-6AL-4V under a Fighter Spectrum
38
2.4 A Virtual Engineering Approach for Predicting the S–N Curves for 7050-T7451
40
2.4.1 Computing the Endurance Limit
41
2.5 Conclusion
41
Appendix: Formulae for Computing the Crack Opening Stress
43
References
44
3 Cohesive Technology Applied to the Modeling and Simulation of Fatigue Failure
47
Spandan Maiti
3.1 Introduction
47
3.2 Background
49
3.2.1 Models for the Prediction of Threshold Fatigue Crack Behavior
49
3.2.2 Models for the Prediction of Fatigue Crack Propagation
50
3.3 Cohesive Modeling Technique
51
3.3.1 Reversible Cohesive Model
53
3.3.2 A Bilinear Cohesive Law
54
3.3.3 A Cohesive Model Suitable for Fatigue Failure
56
3.3.4 Incorporation of Threshold Behavior
58
3.3.5 Finite Element Implementation
59
3.4 Simulation Results
61
3.4.1 Paris Curve Simulation
61
3.4.2 Prediction of Threshold Limit of Fatigue Crack Growth
65
3.4.3 Effect of on the Threshold Limit
66
3.4.4 Effect of Load Ratio R on Fatigue Crack Threshold
68
3.5 Conclusions
69
References
69
4 Fatigue Damage Map as a Virtual Tool for Fatigue Damage Tolerance
73
Chris A. Rodopoulos
4.1 Introduction
73
4.2 The Basic Understanding of Fatigue Damage
74
4.2.1 Development of Fatigue Cracks and Fatigue Damage Stages
74
4.2.2 Stage II Fatigue Cracking
77
4.2.3 Stage I Fatigue Cracking
78
4.2.4 Stage III Fatigue Cracks
84
4.3 Fatigue Damage Map the Basic Rationale – The Navarro–de los Rios Model
85
4.3.1 Fatigue Damage Map – Defining the Stages of Fatigue Damage
89
4.3.2 Fatigue Damage Map – Defining the Propagation Rate of Fatigue Stages
97
4.4 Conclusions
101
References
101
5 Predicting Creep and Creep/Fatigue Crack Initiation and Growth for Virtual Testing and Life Assessment of Components
105
K.M. Nikbin
5.1 Introduction
106
5.1.1 Background to Life Assessment Codes
106
5.1.2 Creep Analysis of Uncracked Bodies
107
5.1.3 Physical Models Describing Creep
108
5.1.4 Complex Stress Creep
110
5.1.5 Influence of Fatigue in Uncracked Bodies
112
5.2 Fracture Mechanics Parameters in Creep and Fatigue
113
5.2.1 Creep Parameter C* Integral
114
5.3 Predictive Models in High-Temperature Fracture Mechanics
116
5.3.1 Derivation of K and C*
116
5.3.2 Example of CCG Correlation with K and C*
117
5.3.3 Modelling Steady-State Creep Crack Growth Rate
118
5.3.4 Transient Creep Crack Growth Modelling
121
5.3.5 Predictions of Initiation Times ti Prior Onset of Steady Creep Crack Growth
124
5.3.6 Consideration of Crack Tip Angle in the NSW Model
125
5.3.7 The New NSW-MOD Model
126
5.3.8 Finite Element Framework
127
5.3.9 Damage Accumulation at the Crack Tip
128
5.3.10 Elevated Temperature Cyclic Crack Growth
130
5.4 Conclusions
131
5.5 Nomenclatures and Abbreviations
133
References
134
6 Computational Approach Toward Advanced Composite Material Qualification and Structural Certification
137
Frank Abdi, J. Surdenas, Nasir Munir, Jerry Housner, and Raju Keshavanarayana
6.1 Overview
137
6.2 Background
138
6.2.1 FAA Durability and Damage Tolerance Certification Strategy
138
6.2.2 Damage Categories and Comparison of Analysis Methods and Test Results
139
6.2.3 FAA Building-Block Approach
148
6.2.4 Test Reduction Process
151
6.3 Computational Process for Implementing Building-Block Verification
153
6.3.1 Multiple Failure Criteria
154
6.3.2 Micro- and Macro-Composite Mechanics Analysis
156
6.3.3 Progressive Failure Micro-Mechanical Analysis
157
6.3.4 Calibration of Composite Constitutive Properties
158
6.3.5 Composite Material Validation
159
6.3.6 Material Uncertainty Analyzer (MUA)
161
6.4 Establish A- and B-Basis Allowables
163
6.4.1 Combining Limited Test Data with Progressive Failure and Probabilistic Analysis
164
6.4.2 Examples of Allowable Generation for Unnotched and Notched Composite Specimens
166
6.5 Certification by Analysis Example
171
6.6 Summary
182
References
183
7 Modeling of Multiscale Fatigue Crack Growth: Nano/Micro and Micro/Macro Transitions
187
G.C. Sih
7.1 Introduction
188
7.2 Scale Implications Associated with Size Effects
190
7.2.1 Physical Laws Change with Size and Time
190
7.2.2 Surface-to-Volume Ratio as a Controlling Parameter
191
7.2.3 Strength and Toughness: Nano, Micro and Macro
192
7.3 Form Invariant of Two-Parameter Crack Growth Relation
193
7.4 Dual-Scale Fatigue Crack Growth Rate Models
194
7.4.1 Micro/Macro Formulation
196
7.4.2 Nano/Micro Formulation
197
7.5 Micro/Macro Time-Dependent Physical Parameters
198
7.5.1 Macroscopic Material Properties
198
7.5.2 Microscopic Material Properties
201
7.6 Nano/Micro Time-Dependent Physical Parameters
204
7.6.1 Nanoscopic Material Properties
205
7.6.2 Nanoscopic Fatigue Crack Growth Coefficient
207
7.7 Fatigue Crack Growth and Velocity Data
208
7.7.1 Predicted Micro/Macro Results
209
7.7.2 Predicted Nano/Micro Results
210
7.8 Validation of Nano/Micro/Macro Fatigue Crack Growth Behavior
212
7.9 Implication of Multiscaling and Future Considerations
214
References
217
8 Multiscale Modeling of Nanocomposite Materials
221
Gregory M. Odegard
8.1 Introduction
221
8.2 Computational Modeling Tools
223
8.3 Equivalent-Continuum Models
224
8.3.1 Representative Volume Element
224
8.3.2 Equivalent Continuum
227
8.3.3 Equivalence of Averaged Scalar Fields
231
8.3.4 Kinematic Equivalence
232
8.4 Equivalent-Continuum Modeling Strategies
233
8.4.1 Crystalline and Highly Ordered Material Systems
233
8.4.2 Fluctuation Methods
234
8.4.3 Static Deformation Methods
235
8.4.4 Dynamic Deformation Methods
236
8.5 Examples
236
8.5.1 Silica Nanoparticle/Polymer Composites
236
8.5.2 Nanotube/Polymer Composites
238
8.6 Summary
242
References
243
9 Predictive Modeling
247
Michael Doyle
9.1 Introduction
248
9.2 Nanocomposites
251
9.2.1 Nanotechnology and Modeling
253
9.2.2 Composites
255
9.2.3 The Interface Region
258
9.2.4 Functionalization of Interface Region
259
9.2.5 Modeling Approaches
262
9.2.6 Method Developments
265
9.3 Multiscale Modeling
266
9.4 Continuum Methods
267
9.4.1 Predicting Material Properties from the Top-Down Approach
267
9.4.2 Analytical Continuum Modeling
268
9.4.3 Computational Continuum Modeling
268
9.5 Materials Engineering Simulation Across Multi-Length and Time Scales
269
9.5.1 Predicting Material Properties from the Bottom-Up Approach
269
9.5.2 Quantum Scale
271
9.5.3 Molecular Scale
272
9.5.4 Molecular Dynamics
274
9.6 Extension of Atomistic Ensemble Methods
275
9.6.1 Combining the Top-Down and Bottom-Up Approaches
275
9.7 Future Improvement
278
9.8 Summary
279
References
281
10 Multiscale Approach to Predicting the Mechanical Behavior of Polymeric Melts 291
R.C. Picu
10.1 Introduction
291
10.2 Single and Multiscale Modeling Methods: Limitations and Tradeoffs
293
10.2.1 Atomistic and Atomistic-Like Models
293
10.2.2 Molecular Models
296
10.2.3 Continuum Models
297
10.3 Two Information-Passing Examples
298
10.3.1 General Strategy
298
10.3.2 Calibration of Rheological Constitutive Models
299
10.3.3 Developing Coarse-Grained Models of Polymeric Melts
306
References
317
11 Prediction of Damage Propagation and Failure of Composite Structures (Without Testing) 321
G. Labeas
11.1 Introduction
321
11.2 Basics of Progressive Damage Modelling methodology
323
11.2.1 PDM – An Overview
323
11.2.2 Multiscale Computational Model
324
11.2.3 Prediction of Local Failure at Different Scale Levels
329
11.2.4 Behaviour of Damaged Material
331
11.3 Buckling and Damage Interaction of Open-Hole Composite Plates by PDM
334
11.3.1 Composite Panel with Circular Cut-Out
334
11.3.2 Computational Model for the Open-Hole Panel Problem
335
11.3.3 Interaction Effects Between Damage Failure and Plate Buckling
337
11.4 Implementation of PDM in Composite Bolted Joints
339
11.4.1 Description of Composite Bolted Joint Problem
339
11.4.2 Damage Initiation and Progression Within the Bolted Joint
342
11.5 Implementation of PDM in Composite Bonded Repairs
345
11.5.1 Description of the Composite Repair Patch Problem
345
11.5.2 Details of PDM Model for Composite Repair Patch Analysis
346
11.5.3 Effects of Composite Patch Geometry and Material on the SIF
348
11.6 Multi-Scale Modeling of Tensile Behavior of Carbon Nanotube-Reinforced Composites
350
11.7 Conclusions
352
References
353
12 Functional Nanostructured Polymer–Metal Interfaces 357
Niranjan A. Malvadkar, Michael A. Ulizio, Jill Lowman, and Melik C. Demirel
12.1 Introduction
357
12.2 Oblique-Angle Polymerization
358
12.2.1 Nanostructured Polymer growth
358
12.2.2 Control of Morphology and Topography
360
12.3 Metallization of Nanostructured Polymers
361
12.3.1 Electroless Metal Deposition
362
12.3.2 Vapor Phase Metal Deposition
363
12.3.3 Nanoparticle Assembly
364
12.4 Conclusions
366
References
368
13 Advanced Experimental Techniques for Multiscale Modeling of Materials 371
Reza S. Yassar and Hessam M.S. Ghassemi
13.1 Atomic Force Microscopy (AFM)
372
13.1.1 Principles of AFM
372
13.1.2 AFM Operation
374
13.1.3 Application of AFM
375
13.1.4 Modeling and Simulation
379
13.2 X-Ray Ultra-Microscopy
382
13.2.1 Principles of XuM
382
13.2.2 Phase Contrast and Absorption Contrast
384
13.2.3 3D Imaging and Multiscale Modeling Applications
385
13.3 In Situ Micro-Electro-Mechanical-Systems (MEMS) Introduction
388
13.3.1 Principle and Design of MEMS Devices
389
13.3.2 Application of MEMS Devices for Materials Modeling
392
13.4 Concluding Remarks
395
References
396
Index 399