Muutke küpsiste eelistusi

E-raamat: Virtualized Cloud Data Center Networks: Issues in Resource Management.

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book discusses the characteristics of virtualized cloud networking, identifies the requirements of cloud network management, and illustrates the challenges in deploying virtual clusters in multi-tenant cloud data centers. The book also introduces network partitioning techniques to provide contention-free allocation, topology-invariant reallocation, and highly efficient resource utilization, based on the Fat-tree network structure.  Managing cloud data center resources without considering resource contentions among different cloud services and dynamic resource demands adversely affects the performance of cloud services and reduces the resource utilization of cloud data centers. These challenges are mainly due to strict cluster topology requirements, resource contentions between uncooperative cloud services, and spatial/temporal data center resource fragmentation. Cloud data center network resource allocation/reallocation which cope well with such challenges will allow cloud s

ervices to be provisioned with predictable network performance, mitigate service performance degradation and even guarantee service level agreements.  Virtualized Cloud Data Center Networks: Issues in Resource Management tackles the challenges of managing cloud data center networks and introduces techniques to efficiently deploy large-scale distributed computing applications that require predictable performance in multi-tenant cloud data centers. 

Introduction.- Allocation of Virtual Machines.- Transformation of Data Center Networks.- Allocation of Servers.- Performance Evaluation.- Conclusion.

Arvustused

This small book is packed with technical detail and well supported with figures and examples. There is a thorough table of contents, and each chapter finishes with a list of references. This is a good, detailed foundation for understanding the mechanisms involved in successfully managing and resourcing high-performance, multitenant cloud data centers. In summary, this is a short book, but is definitely not a light read. (David B. Henderson, Computing Reviews, computingreviews.com, October, 2016)

1 Introduction
1(8)
1.1 Cloud Computing
1(1)
1.2 Server Virtualization
1(1)
1.3 Server Consolidation
2(1)
1.4 Scheduling of Virtual Machine Reallocation
3(1)
1.5 Intra-Service Communications
3(1)
1.6 Topology-Aware Allocation
4(1)
1.7 Summary
5(4)
References
6(3)
2 Allocation of Virtual Machines
9(6)
2.1 Problem Formulation
9(2)
2.2 Adaptive Fit Algorithm
11(2)
2.3 Time Complexity of Adaptive Fit
13(2)
Reference
13(2)
3 Transformation of Data Center Networks
15(14)
3.1 Labeling Network Links
15(2)
3.2 Grouping Network Links
17(1)
3.3 Formatting Star Networks
18(2)
3.4 Matrix Representation
20(3)
3.5 Building Variants of Fat-Tree Networks
23(1)
3.6 Fault-Tolerant Resource Allocation
23(2)
3.7 Fundamental Properties of Reallocation
25(2)
3.8 Traffic Redirection and Server Migration
27(2)
Reference
27(2)
4 Allocation of Servers
29(12)
4.1 Problem Formulation
29(3)
4.2 Multi-Step Reallocation
32(2)
4.3 Generality of the Reallocation Mechanisms
34(1)
4.4 On-Line Algorithm
34(1)
4.5 Listing All Reallocation (LAR)
35(1)
4.6 Single-Pod Reallocation (SPR)
36(1)
4.7 Multi-Pod Reallocation (MPR)
36(1)
4.8 StarCube Allocation Procedure (SCAP)
37(1)
4.9 Properties of the Algorithm
37(4)
References
39(2)
5 Performance Evaluation
41(10)
5.1 Settings for Evaluating Server Consolidation
41(1)
5.2 Cost of Server Consolidation
42(1)
5.3 Effectiveness of Server Consolidation
43(1)
5.4 Saved Cost of Server Consolidation
43(1)
5.5 Settings for Evaluating StarCube
44(1)
5.6 Resource Efficiency of StarCube
45(2)
5.7 Impact of the Size of Partitions
47(1)
5.8 Cost of Reallocating Partitions
48(3)
6 Conclusion
51(2)
Appendix 53