Muutke küpsiste eelistusi

E-raamat: Virtualizing 5G and Beyond 5G Mobile Networks

  • Formaat: 410 pages
  • Ilmumisaeg: 31-Jan-2023
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630819316
  • Formaat - PDF+DRM
  • Hind: 129,87 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 410 pages
  • Ilmumisaeg: 31-Jan-2023
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630819316

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The fifth generation (5G) mobile network brings significant new capacity and opportunity to network operators while also creating new challenges and additional pressure to build and operate networks differently. The transformation to 5G mobile networks creates the opportunity to virtualize significant portions of the radio access (RAN) and network core, allowing operators to better compete with over-the-top and hyperscaler offerings. This book covers the business and technical areas of virtualization that enable the transformation and innovation that todays operators are seeking. It identifies forward-looking gaps where the technology continues to develop, specifically packet acceleration and timing requirements, which today are still not fully virtualized. The book shows you the operational and support considerations, development and lifecycle management, business implications, and vendor-team dynamics involved in deploying a virtualized network. Packed with key concepts of virtualization that solve a broad array of problems, this is an essential reference for those entering this technical domain, those that are going to build and operate these networks, and those that are seeking to learn more about the telecom network. It illustrates why you just cant do it all in the cloud today.
Acknowledgments xix
Part I Fundamentals of Virtualization in Communication Service Provider Networks
1(124)
1 Virtualizing of the 5G Radio Access and Core Network
3(20)
1.1 Introduction to Virtualizing the Mobile Network
3(3)
1.1.1 The Beginning of Network Function Virtualization
3(3)
1.2 Expanding on the First Vision of Virtualization
6(1)
1.3 Breaking Down the Fundamentals Driving Virtualization
7(1)
1.4 Applying This Discussion to the Mobile Radio Network
8(1)
1.5 Transforming the Mobile Network One Gat a Time
9(3)
1.6 Evolving Small Steps on the Gs
12(1)
1.7 Which Network Is This Exactly?
13(1)
1.8 Acronyms and Domain-Specific Terms Abound
14(1)
1.9 Telecom Providers Go by Many Names
14(1)
1.10 Addressing the Various Audiences
15(1)
1.11 To Those New to This Industry
16(1)
1.12 Structure of the Remaining
Chapters
16(7)
1.12.1 The Fundamentals:
Chapters 1-5
16(2)
1.12.2 Engineering of Virtualized 5G and B5G Systems:
Chapters 6-11
18(2)
1.12.3 Future Developments:
Chapters 12-14
20(1)
1.12.4 Acronyms and Terms
20(1)
References
20(3)
2 Benefits of NFV for 5G and B5G Networks and Standards Bodies
23(26)
2.1 Why Use NFV for Networks?
23(1)
2.1.1 Transformation of a Large Legacy Business Is Difficult
23(1)
2.2 The Existing NEP Ecosystem of Vendors
24(1)
2.3 Changing Business Models Midstream
25(1)
2.4 Independent Software Vendors as NEPs
26(1)
2.5 Green-Field Entrants into the CSP Business
26(1)
2.6 Transformation from Hardware-Centric to Software-Centric Networks
27(3)
2.6.1 Data Traffic Dominates the Network
27(1)
2.6.2 There Is a Fixed Cost to Moving Bits
28(1)
2.6.3 A Tale of Two Models
29(1)
2.7 Applying the Cloud Model to the Telco
30(2)
2.8 Paths Taken to Evolve the Telco Network
32(1)
2.8.1 3G Data Begins to Be the Primary Content in the Network
32(1)
2.8.2 Interfaces Connecting Endpoints in the Network
32(1)
2.9 The Ever-Evolving Introduction of Technology into the Network
33(3)
2.9.1 Making the Network Global
33(1)
2.9.2 This Global Network Comes at a High Cost
34(1)
2.9.3 Relating This Back to the 5G Network
35(1)
2.10 The Drive for Improved Agility and Efficiency
36(1)
2.10.1 DevOps and Continuous Integration and Continuous Delivery
36(1)
2.11 Separation between Data Plane and Control Plane
37(3)
2.11.1 The 5G User Plane Function and Data Network
38(1)
2.11.2 5G Standalone and Non-Standalone Deployments
39(1)
2.12 3GPP as the Leading Standard Body for the Mobile Network
40(1)
2.13 Introducing the International Telecommunication Union
41(1)
2.14 Other Standards Bodies
42(1)
2.15 Open RAN's Role in Virtualizing 5G
43(1)
2.16 Venture Capital Investments
44(1)
2.17 Summary
45(4)
References
46(3)
3 Virtualization Concepts for Networks
49(22)
3.1 The Virtualization of the Network
49(2)
3.1.1 What Is Virtualization?
50(1)
3.2 Managing the Virtual Resources: Resource Control and Efficiency
51(1)
3.3 A Brief History of Virtualization Concepts
52(1)
3.4 Virtualization Through the Ages
53(7)
3.4.1 The Early Years: Computer and OS Virtualization
53(2)
3.4.2 The Second Decade of Virtualization: Virtualization Leaves the Research Labs
55(1)
3.4.3 Smaller Computers Join the Fray
56(1)
3.4.4 Processes Start Talking to Each Other
56(1)
3.4.5 Democratizing Computing in the 1980s
57(1)
3.4.6 1990s: Universality and Independence
58(1)
3.4.7 2000: The Era of Hardware Efficiency
58(1)
3.4.8 2010: Control Efficiency
59(1)
3.5 Cloud Computing
60(3)
3.5.1 1970-1980: The Embryonic Phase
60(1)
3.5.2 1990: Distributed and Bundling
61(1)
3.5.3 2000: The Cloud Becomes a Commercial Offering
61(1)
3.5.4 2010s: Control, Automation, Orchestration, and Application Engineering
62(1)
3.6 Network Virtualization
63(4)
3.6.1 1960-Mid-1980: Roots and Programmability of Distributed Computing
63(1)
3.6.2 Mid-1980-2000: The Internet Boom
64(1)
3.6.3 2000-2005: Powerful Application Overlays and Ossification of the Internet
64(1)
3.6.4 2005-2010: Network Virtualization and Network Slices
65(1)
3.6.5 2010: Programmability of the Network
66(1)
3.7 Basic Objects and Data Structures for Network Virtualization
67(2)
3.7.1 Network Topology
68(1)
3.7.2 Addressing
68(1)
3.7.3 Routing
68(1)
3.7.4 Resource Management
69(1)
3.8 Summary
69(2)
References
69(2)
4 Data Plane Virtualization and Programmability for Mobile Networks
71(28)
4.1 Data Plane Acceleration with OpenFlow and P4
71(3)
4.1.1 Context for Acceleration
71(3)
4.2 OpenFlow
74(12)
4.2.1 Flows
75(1)
4.2.2 Configuration
75(1)
4.2.3 System Model and Pipeline
75(1)
4.2.4 Ports
76(1)
4.2.5 Group, Meters, and Counters
77(1)
4.2.6 Forwarding Abstraction
77(3)
4.2.7 Instructions and Actions
80(1)
4.2.8 Header and Match Fields
81(1)
4.2.9 Examples for Matching Headers
81(1)
4.2.10 Open Flow Protocol
81(2)
4.2.11 Distributed Controllers and Flow Visor
83(2)
4.2.12 Evaluation of the Open Flow Concept
85(1)
4.2.13 The Importance of Open Flow in 5G
86(1)
4.3 P4
86(11)
4.3.1 Domain-Specific Programmability
87(1)
4.3.2 The P4 Language
87(1)
4.3.3 P4 Concept
88(1)
4.3.4 Data Plane Forwarding and P4 Enhancements
89(1)
4.3.5 Portable Switch Architecture
90(1)
4.3.6 Programming a P4 Device
90(2)
4.3.7 The P4 Language
92(4)
4.3.8 P4 Runtime Architecture
96(1)
4.3.9 Evaluation of P4
96(1)
4.4 Conclusion
97(2)
References
97(2)
5 Performance of Infrastructures for Virtual Network Functions
99(26)
5.1 Performance and Security Considerations
99(4)
5.1.1 Virtualization Modes and Requirements
100(1)
5.1.2 Sharing, Aggregation, and Emulation in Virtualization
100(3)
5.2 Performance Evaluation Concepts for the Sharing of Resources
103(10)
5.2.1 Networking Scenario
103(1)
5.2.2 Mathematical Concept
104(1)
5.2.3 Mathematics Model
105(1)
5.2.4 A More Realistic Description of the Impact
106(2)
5.2.5 Smallest Timescale and Timescale Analysis
108(2)
5.2.6 Capabilities and Conclusion
110(3)
5.3 Performance Evaluation Concepts for the Aggregation of Resources
113(3)
5.3.1 Foundations
113(3)
5.4 CPU Pinning
116(3)
5.5 Non-Uniform Memory Access
119(4)
5.6 Conclusion
123(2)
References
123(2)
Part II Engineering of Virtualized 5G and B5G Systems
125(114)
6 Transforming and Disaggregation in 5G and B5G Networks
127(16)
6.1 The Transforming and Disaggregation of the Network
127(2)
6.1.1 Challenges to Transforming the Telco Network
128(1)
6.2 DevOps: A Method to Improve System Management
129(2)
6.3 Telco DevOps
131(2)
6.4 Transforming the Operations in the Network
133(2)
6.5 Rolling out 5G in the Network
135(2)
6.5.1 5G Non-Standalone and Standalone Considerations
135(2)
6.6 Private LTE and Private 5G
137(1)
6.7 The Cost of 4G and 5G Is Changing
138(2)
6.7.1 Regulatory Considerations
139(1)
6.8 Security in the Disaggregated Network
140(1)
6.9 Transforming Operations: A Use Case Example
141(1)
6.10 Beyond 5G Market Drivers
141(2)
References
142(1)
7 Designing Virtualized RAN
143(22)
7.1 Virtualizing the 5G RAN
143(4)
7.1.1 It All Begins with the Standards
144(1)
7.1.2 Operating Systems of Choice
145(1)
7.1.3 Supplementation of the OS
146(1)
7.2 The Continuing Evolution of the Standards
147(1)
7.3 Attaching the UE to a Network
148(4)
7.3.1 The Roaming UE
150(1)
7.3.2 The UE Detailed Signaling Flow
150(2)
7.4 Initialization of the DU to CU Connection
152(1)
7.4.1 Back to the UE Attachment
153(1)
7.5 The 80/20 Rule
153(1)
7.6 Splitting the RAN: Revisited
154(5)
7.6.1 FEC Processing and More in the RAN
154(5)
7.7 Enhanced Common Public Radio Interface: The Fronthaul Interface Transformation
159(3)
7.8 Summary
162(3)
References
163(2)
8 VRAN Performance Engineering
165(22)
8.1 Network Performance Engineering
165(2)
8.1.1 5G Drivers
165(1)
8.1.2 5G Usage Scenarios
165(2)
8.1.3 5G Spectrum Bands
167(1)
8.2 5G Functional Split
167(5)
8.2.1 5G Functional Split Origin
167(1)
8.2.2 Ecpri
168(1)
8.2.3 Functional Split Options
169(1)
8.2.4 Functional Splits Trade-Off
169(1)
8.2.5 How to Select and Additional Functional Split Options
170(2)
8.3 5G Deployment Options: SA and NSA Architecture
172(6)
8.3.1 SA and NSA Deployment Options
173(1)
8.3.2 Technical and Cost Comparison
174(2)
8.3.3 Migration Path from 4G LTE to 5G
176(2)
8.4 5GRoadmap
178(5)
8.4.1 3GPP Release of 5GNR
178(1)
8.4.2 5G Services in North America
179(1)
8.4.3 4G-5G Interworking Architecture
180(2)
8.4.4 User Plane and Control Plane Deployment Considerations
182(1)
8.5 Key Challenges in 5G Rollout
183(4)
8.5.1 System Security
183(1)
8.5.2 Service Performance and Availability
184(1)
References
185(2)
9 Building the vRAN Business: Technologies and Economical Concerns for a Virtualized Radio Access Network
187(16)
9.1 What Are the Costs and Opportunities of 5G?
187(2)
9.2 The 5G Business Outcome
189(2)
9.3 New Models to Address the TCO
191(1)
9.4 The oRAN Model Introduces a RAN Intelligent Controller
192(4)
9.5 Features of the One-Socket Server
196(1)
9.6 Open Source Remains a Critical Element to the Virtualization Effort
197(1)
9.6.1 Open-Source Community in the RAN
197(1)
9.7 Asymmetry in 5G and the Previous Gs
197(1)
9.8 5G Market Drivers in Asia
198(1)
9.9 Business Considerations of Virtualization
199(1)
9.10 Pro and Cons of White Boxes, Which Are Truly SHVSs, in the vRAN
199(1)
9.11 Bright Boxes: Standard High-Volume Servers with One or Two Customized Features
200(3)
References
201(2)
10 Designing Virtualized 5G Networks
203(18)
10.1 Successfully Designing Virtualized 5G Networks
203(3)
10.1.1 What Is Success for a Virtual System Design?
204(1)
10.1.2 Overall Aim
204(1)
10.1.3 Efficient Virtualization
204(1)
10.1.4 Separation and Portability
205(1)
10.1.5 Open-Source Software
205(1)
10.2 Open-Source Software for 5G
206(5)
10.2.1 Why Open-Source Software?
207(1)
10.2.2 Flexibility and Agility
207(1)
10.2.3 Speed of Development and Deployment
207(1)
10.2.4 Low Licensing Efforts
208(1)
10.2.5 Cost-Effectiveness
208(1)
10.2.6 Ability to Start Small
209(1)
10.2.7 Software Security
209(1)
10.2.8 Shared Maintenance Costs
210(1)
10.2.9 Enabling Future Development and Attract Better Talent
210(1)
10.3 5G Open-Source Efforts
211(1)
10.3.1 Open-Source 5G Core Network Elements
211(1)
10.4 Design and Performance Criteria for Virtualized 5G Systems
211(2)
10.4.1 Computer Systems and Software Engineering Concepts for Virtualized 5G Systems
212(1)
10.5 Computer Systems and Software Engineering Concepts for 5G Functions
213(2)
10.6 Performance Criteria for 5G Systems
215(3)
10.6.1 Scenarios and KPIs
217(1)
10.7 Summary
218(3)
References
218(3)
11 Scaling Disaggregated vRANs
221(18)
11.1 The Disaggregated vRAN
221(2)
11.1.1 RAN Disaggregation
221(2)
11.2 RAN Intelligent Controller Overview
223(4)
11.2.1 Interfaces
223(2)
11.2.2 RIC Design Principles and Components
225(1)
11.2.3 Policy Guidance
225(1)
11.2.4 ML/AI Role in the RIC
226(1)
11.3 Security Challenges
227(6)
11.3.1 Key Security Threats
227(2)
11.3.2 Key Security Pillars
229(4)
11.4 5G Resiliency
233(6)
11.4.1 Network Resiliency
233(1)
11.4.2 VNF Resiliency
234(1)
11.4.3 Dynamic Rerouting with Live Migration Support
235(1)
References
236(3)
Part III Future Developments in the Mobile Network
239(56)
12 Private 5G Networks and the Edge
241(24)
12.1 The Privatization of the Network with p5G
241(3)
12.1.1 Usage Scenario and Objectives
242(1)
12.1.2 Service Objectives and Attributes for Private 5G
243(1)
12.2 Technology Overview
244(8)
12.2.1 Deployment Scenarios
245(7)
12.3 Multiaccess Edge Computing and Private 5G Systems
252(4)
12.3.1 MEC Overview
252(2)
12.3.2 MEC Architecture Elements
254(1)
12.3.3 Future MEC Solutions for Private 5G Systems
254(2)
12.4 Business Issues with Private 5G and MEC Systems
256(4)
12.4.1 Enabling Private 5G Benefits for Applications
257(2)
12.4.2 SIM, eSIM, iSIM
259(1)
12.4.3 MEC and Hyperscalers at the Edge
259(1)
12.5 Summary
260(5)
References
261(4)
13 Open-Source Software Development and Experimental Activities
265(20)
13.1 Introduction
265(1)
13.2 5G Open-Source Software Packages
265(5)
13.2.1 Open-Source 5G Core Network Elements
266(1)
13.2.2 Open-Source Evolved Packet Core
267(1)
13.2.3 Open-Source Radio Access Network Elements
268(1)
13.2.4 Open SDR Devices
269(1)
13.2.5 Open-Source Control and Orchestration
270(1)
13.3 5G Experimental Networks for US-EU Collaboration
270(10)
13.3.1 POWDER
271(1)
13.3.2 Colosseum
271(1)
13.3.3 COSMOS
272(1)
13.3.4 AERPAW
272(1)
13.3.5 NITOS
273(1)
13.3.6 R2lab
273(1)
13.3.7 Open Experimental Sites in 5G-EVE
274(3)
13.3.8 Open Experimental Sites in 5GENESIS
277(1)
13.3.9 Open Experimental Sites in 5G-VINNI
278(2)
13.4 Summary
280(5)
References
282(3)
14 Summary of Virtualization of 5G and Beyond
285(10)
14.1 Where It All Began
285(4)
14.2 New Markets
289(1)
14.3 6G Is on the Horizon
290(1)
14.4 Summary of Some Key Factors
291(2)
14.4.1 A Cloudy Crystal Ball
292(1)
14.5 Conclusion
293(2)
14.5.1 Possible Research Areas
293(1)
References
294(1)
Glossary of Acronyms and Common Terms 295(10)
About the Authors 305(4)
Index 309